Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tania Pardo is active.

Publication


Featured researches published by Tania Pardo.


Environmental Pollution | 2014

Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil.

Luke Beesley; Onyeka S. Inneh; Gareth J. Norton; Eduardo Moreno-Jiménez; Tania Pardo; Rafael Clemente; Julian J.C. Dawson

Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk.


Chemosphere | 2011

Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities.

Tania Pardo; Rafael Clemente; M. Pilar Bernal

The use of organic wastes as amendments in heavy metal-polluted soils is an ecological integrated option for their recycling. The potential use of alperujo (solid olive-mill waste) compost and pig slurry in phytoremediation strategies has been studied, evaluating their short-term effects on soil health. An aerobic incubation experiment was carried out using an acid mine spoil based soil and a low OM soil from the mining area of La Unión (Murcia, Spain). Arsenic and heavy metal solubility in amended and non-amended soils, and microbial parameters were evaluated and related to a phytotoxicity test. The organic amendments provoked an enlargement of the microbial community (compost increased biomass-C from non detected values to 35 μg g(-1) in the mine spoil soil, and doubled control values in the low OM soil) and an intensification of its activity (including a twofold increase in nitrification), and significantly enhanced seed germination (increased cress germination by 25% in the mine spoil soil). Organic amendments increased Zn and Pb EDTA-extractable concentrations, and raised As solubility due to the influence of factors such as pH changes, phosphate concentration, and the nature of the organic matter of the amendments. Compost, thanks to the greater persistence of its organic matter in soil, could be recommended for its use in (phyto)stabilisation strategies. However, pig slurry boosted inorganic N content and did not significantly enhance As extractability in soil, so its use could be specifically recommended in As polluted soils.


Journal of Hazardous Materials | 2012

The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions.

Rafael Clemente; David J. Walker; Tania Pardo; Domingo Martínez-Fernández; M. Pilar Bernal

The halophytic shrub Atriplex halimus L. was used in a field phytoremediation experiment in a semi-arid area highly contaminated by trace elements (As, Cd, Cu, Mn, Pb and Zn) within the Sierra Minera of La Unión-Cartagena (SE Spain). The effects of compost and pig slurry on soil conditions and plant growth were determined. The amendments (particularly compost) only slightly affected trace element concentrations in soil pore water or their availability to the plants, increased soil nutrient and organic matter levels and favoured the development of a sustainable soil microbial biomass (effects that were enhanced by the presence of A. halimus) as well as, especially for slurry, increasing A. halimus biomass and ground cover. With regard to the minimisation of trace elements concentrations in the above-ground plant parts, the effectiveness of both amendments was greatest 12-16 months after their incorporation. The findings demonstrate the potential of A. halimus, particularly in combination with an organic amendment, for the challenging task of the phytostabilisation of contaminated soils in (semi-)arid areas and suggest the need for an ecotoxicological evaluation of the remediated soils. However, the ability of A. halimus to accumulate Zn and Cd in the shoot may limit its use to moderately-contaminated sites.


Journal of Hazardous Materials | 2014

Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators.

Tania Pardo; Rafael Clemente; L. Epelde; Carlos Garbisu; M.P. Bernal

The efficiency of a remediation strategy was evaluated in a mine soil highly contaminated with trace elements (TEs) by microbiological, ecotoxicological and physicochemical parameters of the soil and soil solution (extracted in situ), as a novel and integrative methodology for assessing recovery of soil health. A 2.5-year field phytostabilisation experiment was carried out using olive mill-waste compost, pig slurry and hydrated lime as amendments, and a native halophytic shrub (Atriplex halimus L.). Comparing with non-treated soil, the addition of the amendments increased soil pH and reduced TEs availability, favoured the development of a sustainable vegetation cover (especially the organic materials), stimulated soil microorganisms (increasing microbial biomass, activity and functional diversity, and reducing stress) and reduced direct and indirect soil toxicity (i.e., its potential associated risks). Therefore, under semi-arid conditions, the use of compost and pig slurry with A. halimus is an effective phytostabilisation strategy to improve soil health of nutrient-poor soils with high TEs concentrations, by improving the habitat function of the soil ecosystem, the reactivation of the biogeochemical cycles of essential nutrients, and the reduction of TEs dissemination and their environmental impact.


Environmental Science and Pollution Research | 2014

The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil.

Tania Pardo; Domingo Martínez-Fernández; Rafael Clemente; David J. Walker; M. Pilar Bernal

The applicability of a mature compost as a soil amendment to promote the growth of native species for the phytorestoration of a mine-affected soil from a semi-arid area (SE Spain), contaminated with trace elements (As, Cd, Cu, Mn, Pb and Zn), was evaluated in a 2-year field experiment. The effects of an inorganic fertiliser were also determined for comparison. Bituminaria bituminosa was the selected native plant since it is a leguminous species adapted to the particular local pedoclimatic conditions. Compost addition increased total organic-C concentrations in soil with respect to the control and fertiliser treatments, maintained elevated available P concentrations throughout the duration of the experiment and stimulated soil microbial biomass, while trace elements extractability in the soil was rather low due to the calcareous nature of the soil and almost unaltered in the different treatments. Tissue concentrations of P and K in B. bituminosa increased after the addition of compost, associated with growth stimulation. Leaf Cu concentration was also increased by the amendments, although overall the trace elements concentrations can be considered non-toxic. In addition, the spontaneous colonisation of the plots by a total of 29 species of 15 different families at the end of the experiment produced a greater vegetation cover, especially in plots amended with compost. Therefore, the use of compost as a soil amendment appears to be useful for the promotion of a vegetation cover and the phytostabilisation of moderately contaminated soils under semi-arid conditions.


Chemosphere | 2014

Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk

Tania Pardo; M.P. Bernal; Rafael Clemente

A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies.


Environmental Toxicology and Chemistry | 2016

Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

Tania Pardo; Clémence M. Bes; Maria Pilar Bernal; Rafael Clemente

Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBindTM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884.


Science of The Total Environment | 2018

Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate

Tania Pardo; Beatriz Rodríguez-Garrido; Ramez Saad; Jose Luis Soto-Vázquez; Mariana Loureiro-Viñas; Ángeles Prieto-Fernández; Guillaume Echevarria; Emil Benizri; Petra Kidd

Nickel (Ni) agromining of ultramafic soils has been proposed as an eco-friendly option for metal recovery, which can also improve the fertility and quality of these low productive soils. The selection of adequate plant species and the analysis of their performance under the different climatic conditions are of interest for optimising the process and evaluating its full viability. A one-year field experiment was carried out to evaluate the viability of the two Ni-hyperaccumulating Mediterranean species, Alyssum murale and Leptoplax emarginata, for agromining purposes in ultramafic soils under a humid-temperate climate. Field plots of 50 m2 were established and the soil was fertilised with gypsum and inorganic NPK fertilisers prior to cropping. Alyssum murale produced a slightly higher Ni yield than L. emarginata, but Ni bioaccumulation was dependent on the plant phenological stage for both species, being maximal at mid-flowering (4.2 and 3.0 kg Ni ha-1, respectively). In both species, Ni was mainly stored in the leaves, especially in leaves of vegetative stems, but also in flowers and fruits in the case of L. emarginata. The main contributors to Ni yield of A. murale were flowering stems and their leaves, while for L. emarginata they were flowering stems and fruits. Implementing the agromining system increased soil nutrient availability, and modified microbial community structure and metabolic activity (due to fertilisation and plant root activity). The soil bacterial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the agromining crops modified the relative abundance of some phyla (increasing Proteobacteria, Bacteroidetes and Nitrospirae and reducing Acidobacteria and Planctomycetes). Cultivating A. murale increased the densities of total culturable bacteria, while L. emarginata selected Ni-tolerant bacteria in its rhizosphere. In summary, both species showed great potential for their use in Ni agromining systems, although optimising soil and crop management practices could improve the phytoextraction efficiency.


Journal of Environmental Management | 2018

Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers

Elena Arco-Lázaro; Tania Pardo; Rafael Clemente; M.P. Bernal

The use of As-rich water for irrigation in agricultural soils may result in As accumulation in soil and crops, with the consequent risk of its entry into the food chain. The effectiveness of three different Fe-based materials (a commercial iron oxide (Bayoxide®), lamination slag (a by-product of the hot rolling of steel) and a commercial red mud derivative (ViroBind™)) used as soil amendments to minimise the impact of irrigation with As-rich water in an agricultural soil-plant system was evaluated in a pot experiment. Simultaneously, the influence of organic and inorganic fertilisation (olive oil mill waste compost versus NPK fertiliser) on the effectiveness of iron oxide in As adsorption processes was also assessed. The As adsorption capacity of the amendments was determined in a preliminary batch experiment using sorption isotherms. Then, a pot experiment was carried out in a growth chamber using an agricultural soil (arenosol) from Segovia province (central Spain), amended with the different materials, in which Lactuca sativa (lettuce) was grown for two months. The As adsorption capacity was higher in the commercial iron oxide and in the red mud derivative, which fitted the Freundlich model (no saturation), than in the lamination slag, which fitted the Langmuir model (limited adsorption). All the materials decreased the pore water As concentration compared to the control (by 29-80%), but only iron oxide reduced As availability in the soil, and none of the amendments decreased the As concentration in plant leaves. The combination of iron oxide and compost did not significantly improve plant growth, but increased nutrients (N, K, Ca, Na and Mg) concentrations and availability in the soil and their concentration in the plants, relative to the other treatments and the control. Therefore, this seems to be a viable option to prevent As leaching and improve the plant nutritional status.


Olive Mill Waste#R##N#Recent Advances for Sustainable Management | 2017

The use of olive mill waste to promote phytoremediation

Tania Pardo; Pilar Bernal; Rafael Clemente

Olive oil industry generates large amounts of olive mill waste (OMW) materials that generally imply serious environmental concern regarding their storage and management. An interesting and sustainable alternative to conventional waste treatments is their use as amendments in the reclamation of trace elements (TEs) contaminated soils through phytotechnologies. These techniques aim to reduce in situ the toxicity and the dissemination of contaminants, and to restore soil capacity to function as a self-sustaining ecosystem. For that purpose, the addition of soil amendments is often necessary to improve soil fertility and facilitate plant establishment. This chapter reviews the use of the different olive mill by-products in phytoremediation strategies for TEs contaminated soils. The effects of fresh versus processed wastes (compost and biochar) on soil TE solubility and availability, plant development and biological indicators of soil recovery have been examined as key aspects of the reclamation process. Both the potential benefits and the limitations or negative effects that their utilization may pose are pointed out.

Collaboration


Dive into the Tania Pardo's collaboration.

Top Co-Authors

Avatar

Rafael Clemente

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M.P. Bernal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Pilar Bernal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Martínez-Alcalá

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.A. Alburquerque

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos de la Fuente

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Maria Pilar Bernal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Domingo Martínez-Fernández

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Beatriz Rodríguez-Garrido

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

C. de la Fuente

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge