Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanja Bange is active.

Publication


Featured researches published by Tanja Bange.


Molecular Systems Biology | 2014

Proteomic snapshot of the EGF-induced ubiquitin network.

Elisabetta Argenzio; Tanja Bange; Barbara Oldrini; Fabrizio Bianchi; Raghunath Peesari; Sara Mari; Pier Paolo Di Fiore; Matthias Mann; Simona Polo

The activity, localization and fate of many cellular proteins are regulated through ubiquitination, a process whereby one or more ubiquitin (Ub) monomers or chains are covalently attached to target proteins. While Ub‐conjugated and Ub‐associated proteomes have been described, we lack a high‐resolution picture of the dynamics of ubiquitination in response to signaling. In this study, we describe the epidermal growth factor (EGF)‐regulated Ubiproteome, as obtained by two complementary purification strategies coupled to quantitative proteomics. Our results unveil the complex impact of growth factor signaling on Ub‐based intracellular networks to levels that extend well beyond what might have been expected. In addition to endocytic proteins, the EGF‐regulated Ubiproteome includes a large number of signaling proteins, ubiquitinating and deubiquitinating enzymes, transporters and proteins involved in translation and transcription. The Ub‐based signaling network appears to intersect both housekeeping and regulatory circuitries of cellular physiology. Finally, as proof of principle of the biological relevance of the EGF‐Ubiproteome, we demonstrated that EphA2 is a novel, downstream ubiquitinated target of epidermal growth factor receptor (EGFR), critically involved in EGFR biological responses.


Nature | 2017

Basis of catalytic assembly of the mitotic checkpoint complex

Alex C. Faesen; Maria Thanasoula; Stefano Maffini; Claudia Breit; Franziska Müller; Suzan van Gerwen; Tanja Bange; Andrea Musacchio

In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1–MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein–protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.


eLife | 2016

Molecular basis of outer kinetochore assembly on CENP-T.

Pim J. Huis in 't Veld; Sadasivam Jeganathan; Arsen Petrovic; Priyanka Singh; Juliane John; Veronica Krenn; Florian Weissmann; Tanja Bange; Andrea Musacchio

Stable kinetochore-microtubule attachment is essential for cell division. It requires recruitment of outer kinetochore microtubule binders by centromere proteins C and T (CENP-C and CENP-T). To study the molecular requirements of kinetochore formation, we reconstituted the binding of the MIS12 and NDC80 outer kinetochore subcomplexes to CENP-C and CENP-T. Whereas CENP-C recruits a single MIS12:NDC80 complex, we show here that CENP-T binds one MIS12:NDC80 and two NDC80 complexes upon phosphorylation by the mitotic CDK1:Cyclin B complex at three distinct CENP-T sites. Visualization of reconstituted complexes by electron microscopy supports this model. Binding of CENP-C and CENP-T to MIS12 is competitive, and therefore CENP-C and CENP-T act in parallel to recruit two MIS12 and up to four NDC80 complexes. Our observations provide a molecular explanation for the stoichiometry of kinetochore components and its cell cycle regulation, and highlight how outer kinetochore modules bridge distances of well over 100 nm. DOI: http://dx.doi.org/10.7554/eLife.21007.001


Journal of Cell Biology | 2017

Structure of the RZZ complex and molecular basis of its interaction with Spindly

Shyamal Mosalaganti; Jenny Keller; Anika Altenfeld; Michael Winzker; Pascaline Rombaut; Michael Saur; Arsen Petrovic; Annemarie Wehenkel; Sabine Wohlgemuth; Franziska Müller; Stefano Maffini; Tanja Bange; Franz Herzog; Herbert Waldmann; Stefan Raunser; Andrea Musacchio

Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD–Zwilch–ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13–Sec31, and &agr;&bgr;’&egr;-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein’s cargo at human kinetochores.


Angewandte Chemie | 2015

Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes

Chang-Uk Lee; Gernot Hahne; Jonas Hanske; Tanja Bange; David Bier; Christoph Rademacher; Sven Hennig; Tom N. Grossmann

PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2O2) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions.


PLOS ONE | 2015

Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1

Claudia Breit; Tanja Bange; Arsen Petrovic; John R. Weir; Franziska Müller; Doro Vogt; Andrea Musacchio

The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint.


Scientific Reports | 2018

Identification of novel PANDAR protein interaction partners involved in splicing regulation

Nicole Pospiech; H. Cibis; Laura Dietrich; Franziska Müller; Tanja Bange; Sven Hennig

Interactions of long non-coding RNAs (lncRNA) with proteins play important roles in the regulation of many cellular processes. PANDAR (Promotor of CDKN1AAntisense DNA damage Activated RNA) is a lncRNA that is transcribed in a p53-dependent manner from the CDKN1A promoter and is involved in the regulation of proliferation and senescence. Overexpression of PANDAR has been observed in several tumor species and correlated with a poor prognosis for patient survival rate. Depending on the cellular state, PANDAR is known to interact with proteins such as the nuclear transcription factor Y subunit A (NF-YA) and the scaffold attachment factor A (SAF-A). However, a comprehensive analysis of the PANDAR interactome was missing so far. Therefore, we applied peptide nucleic acid (PNA)-based pull-downs combined with quantitative mass spectrometry to identify new protein binding partners. We confirmed potential candidates like U2AF65 and PTBP1, known to be involved in RNA processing. Furthermore, we observed that overexpression of PANDAR leads to a reduced level of the short pro-apoptotic BCL-X splice variant (BCL-XS) which is regulated by PTBP1. Simultaneous overexpression of PTBP1 was able to rescue this effect. Overall, our data suggest a role for PANDAR in the regulation of splicing events via its interaction partner PTBP1.


Current Biology | 2017

BubR1 Promotes Bub3-Dependent APC/C Inhibition during Spindle Assembly Checkpoint Signaling

Katharina Overlack; Tanja Bange; Florian Weissmann; Alex C. Faesen; Stefano Maffini; Ivana Primorac; Franziska Müller; Jan-Michael Peters; Andrea Musacchio

Summary The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif (“loop”) of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade.


Angewandte Chemie | 2018

In Situ Cyclization of Native Proteins: Structure‐Based Design of a Bicyclic Enzyme

Marta Pelay-Gimeno; Tanja Bange; Sven Hennig; Tom N. Grossmann

Abstract Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface‐exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.


Analytical Chemistry | 2018

A simplified protocol for cross-linking mass spectrometry using the MS-cleavable cross-linker DSBU with efficient cross-link identification

Dongqing Pan; Andreas Brockmeyer; Franziska Mueller; Andrea Musacchio; Tanja Bange

Chemical cross-linking combined with mass spectrometry (MS) is a powerful approach to identify and map protein-protein interactions. Its applications support computational modeling of three-dimensional structures and complement classical structural methodologies such as X-ray crystallography, NMR spectroscopy, and electron microscopy (EM). A plethora of cross-linkers, MS methods, and data analysis programs have been developed, but due to their methodological complexity application is currently reserved for specialized mass spectrometry laboratories. Here, we present a simplified single-step purification protocol that results in improved identifications of cross-linked peptides. We describe an easy-to-follow pipeline that combines the MS-cleavable cross-linker DSBU (disuccinimidyl dibutyric urea), a Q-Exactive mass spectrometer, and the dedicated software MeroX for data analysis to make cross-linking MS accessible to structural biology and biochemistry laboratories. In experiments focusing on kinetochore subcomplexes containing 4-10 subunits (so-called KMN network), one-step peptide purification, and enrichment by size-exclusion chromatography yielded identification of 135-228 non-redundant cross-links (577-820 cross-linked peptides) from each experiment. Notably, half of the non-redundant cross-links identified were not lysine-lysine cross-links and involved side chains with hydroxy groups. The new pipeline has a comparable potential toward the identification of protein-protein interactions as previously used pipelines based on isotope-labeled cross-linkers. A newly identified cross-link enabled us to improve our 3D-model of the KMN, emphasizing the power of cross-linking data for evaluation of low-resolution EM maps. In sum, our optimized experimental scheme represents a viable shortcut toward obtaining reliable cross-link data sets.

Collaboration


Dive into the Tanja Bange's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Rathmer

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge