Tanja Kunej
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanja Kunej.
Cancer Research | 2010
Milena S. Nicoloso; Hao Sun; Riccardo Spizzo; Hyunsoo Kim; Priyankara Wickramasinghe; Masayoshi Shimizu; Sylwia E. Wojcik; Jana Ferdin; Tanja Kunej; Lianchun Xiao; Siranoush Manoukian; Giorgio Secreto; Fernando Ravagnani; Xuemei Wang; Paolo Radice; Carlo M. Croce; Ramana V. Davuluri; George A. Calin
Single-nucleotide polymorphisms (SNP) associated with polygenetic disorders, such as breast cancer (BC), can create, destroy, or modify microRNA (miRNA) binding sites; however, the extent to which SNPs interfere with miRNA gene regulation and affect cancer susceptibility remains largely unknown. We hypothesize that disruption of miRNA target binding by SNPs is a widespread mechanism relevant to cancer susceptibility. To test this, we analyzed SNPs known to be associated with BC risk, in silico and in vitro, for their ability to modify miRNA binding sites and miRNA gene regulation and referred to these as target SNPs. We identified rs1982073-TGFB1 and rs1799782-XRCC1 as target SNPs, whose alleles could modulate gene expression by differential interaction with miR-187 and miR-138, respectively. Genome-wide bioinformatics analysis predicted approximately 64% of transcribed SNPs as target SNPs that can modify (increase/decrease) the binding energy of putative miRNA::mRNA duplexes by >90%. To assess whether target SNPs are implicated in BC susceptibility, we conducted a case-control population study and observed that germline occurrence of rs799917-BRCA1 and rs334348-TGFR1 significantly varies among populations with different risks of developing BC. Luciferase activity of target SNPs, allelic variants, and protein levels in cancer cell lines with different genotypes showed differential regulation of target genes following overexpression of the two interacting miRNAs (miR-638 and miR-628-5p). Therefore, we propose that transcribed target SNPs alter miRNA gene regulation and, consequently, protein expression, contributing to the likelihood of cancer susceptibility, by a novel mechanism of subtle gene regulation.
Mutation Research | 2011
Tanja Kunej; Irena Godnic; Jana Ferdin; Simon Horvat; Peter Dovč; George A. Calin
MicroRNAs (miRNAs) belong to the heterogeneous class of non-coding RNAs (ncRNAs) that regulate the translation and degradation of target mRNAs, and control approximately 30% of human genes. MiRNA genes might be silenced in human tumors (oncomiRs) by aberrant hypermethylation of CpG islands that encompass or lie adjacent to miRNA genes and/or by histone modifications. We performed literature search for research articles describing epigenetically regulated miRNAs in cancer and identified 45 studies that were published between 2006 and 7/2010. The data from those papers are fragmented and methodologically heterogeneous and our work represents first systematic review towards to integration of diverse sets of information. We reviewed the methods used for detection of miRNA epigenetic regulation, which comprise bisulfite genomic sequencing PCR (BSP), bisulfite pyrosequencing, methylation specific PCR (MSP), combined bisulfite restriction analysis (COBRA), methylation sensitive single nucleotide primer extension (Ms-SNuPE), MassARRAY technique and some modifications of those methods. This integrative study revealed 122 miRNAs that were reported to be epigenetically regulated in 23 cancer types. Compared to protein coding genes, human oncomiRs showed an order of magnitude higher methylation frequency (11.6%; 122/1048 known miRNAs). Nearly half, (45%; 55/122) epigenetically regulated miRNAs were associated with different cancer types, but other 55% (67/122) miRNAs were present in only one cancer type and therefore representing cancer-specific biomarker potential. The data integration revealed miRNA epigenomic hot spots on the chromosomes 1q, 7q, 11q, 14q and 19q. CpG island analysis of corresponding miRNA precursors (pre-miRNAs) revealed that 20% (26/133) of epigenetically regulated miRNAs had a CpG island within the range of 5kb upstream, among them 14% (19/133) of miRNAs resided within the CpG island. Our integrative survey and analyses revealed candidate cancer-specific miRNA epigenetic signatures which provide the basis for new therapeutic strategies in cancer by targeting the epigenetic regulation of miRNAs.
Animal Genetics | 2009
Jernej Ogorevc; Tanja Kunej; Andrej Razpet; Peter Dovč
A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3′UTRs of candidate genes.
Archives of Toxicology | 2016
Klara Piletič; Tanja Kunej
MicroRNAs (miRNAs) are short non-coding RNAs that act as important regulators of gene expression as part of the epigenetic machinery. In addition to posttranscriptional gene silencing by miRNAs, the epigenetic mechanisms also include DNA methylation, histone modifications and their crosstalk. Epigenetic modifications were reported to play an important role in many disease onsets and progressions and can be used to explain several features of complex diseases, such as late onset and fluctuation of symptoms. However, miRNAs not only function as a part of epigenetic machinery, but are also epigenetically modified by DNA methylation and histone modification like any other protein-coding gene. There is a strong connection between epigenome and miRNome, and any dysregulation of this complex system can result in various physiological and pathological conditions. In addition, miRNAs play an important role in toxicogenomics and may explain the relationship between toxicant exposure and tumorigenesis. The present review provides information on 63 miRNA genes shown to be epigenetically regulated in association with 21 diseases, including 11 cancer types: cardiac fibrosis, cardiovascular disease, preeclampsia, Hirschsprung’s disease, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, temporal lobe epilepsy, autism, pulmonary fibrosis, melanoma, acute myeloid leukemia, chronic lymphocytic leukemia, colorectal, gastric, cervical, ovarian, prostate, lung, breast, and bladder cancer. The review revealed that hsa-miR-34a, hsa-miR-34b, and hsa-miR-34c are the most frequently reported epigenetically dysregulated miRNAs. There is a need to further study molecular mechanisms of various diseases to better understand the crosstalk between epigenetics and gene expression and to develop new therapeutic options and biomarkers.
Technology in Cancer Research & Treatment | 2010
Jana Ferdin; Tanja Kunej; George A. Calin
MicroRNAs (miRNAs) belong to the heterogeneous class of non-coding RNAs (ncRNAs), which are by definition RNA molecules that do not encode for proteins, but have instead important structural, catalytic or regulatory functions. In this review we first provide an overview of the different ncRNA families, focusing in particular on miRNAs and their relevance in tumour development and progression. Second we shortly describe the available ncRNA expression profiling methods, which comprise microarray, bead-based hybridization methods, in situ hybridization, quantitative real-time polymerase chain reaction, cloning and deep sequencing methods. Finally, we used the PubMed database to perform an extensive literature search for miRNA expression profiling research articles in cancer and identified 58 studies that were published between 2004 and 2009; we identified 70 miRNAs that were reported in at least five studies as being either up- or downregulated, depending on the type of cancer, and 192 miRNAs that were reported to be up- or downregulated in at least two reports. MiRNA expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis, and response to treatment. Based on the most important findings we discuss the possible use of miRNAs as clinical biomarkers in the management of cancer patients for diagnosis, prognosis, and response to therapy.
PLOS ONE | 2012
Minja Zorc; Daša Jevšinek Skok; Irena Godnic; George A. Calin; Simon Horvat; Zhihua Jiang; Peter Dovč; Tanja Kunej
MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies.
Cancer Journal | 2012
Tanja Kunej; Irena Godnic; Simon Horvat; Þ Minja Zorc; George A. Calin
AbstractMicroRNAs (miRNAs) are a class of noncoding RNAs (ncRNAs) and posttranscriptional gene regulators shown to be involved in pathogenesis of all types of human cancers. Their aberrant expression as tumor suppressors can lead to cancerogenesis by inhibiting malignant potential, or when acting as oncogenes, by activating malignant potential. Differential expression of miRNA genes in tumorous tissues can occur owing to several factors including positional effects when mapping to cancer-associated genomic regions, epigenetic mechanisms, and malfunctioning of the miRNA processing machinery, all of which can contribute to a complex miRNA-mediated gene network misregulation. They may increase or decrease expression of protein-coding genes, can target 3′-UTR or other genic regions (5′-UTR, promoter, coding sequences), and can function in various subcellular compartments, developmental, and metabolic processes. Because expanding research on miRNA-cancer associations has already produced large amounts of data, our main objective here was to summarize main findings and critically examine the intricate network connecting the miRNAs and coding genes in regulatory mechanisms and their function and phenotypic consequences for cancer. By examining such interactions, we aimed to gain insights for the development of new diagnostic markers as well as identification of potential venues for more selective tumor therapy. To enable efficient examination of the main past and current miRNA discoveries, we developed a Web-based miRNA timeline tool that will be regularly updated (http://www.integratomics-time.com/miRNA_timeline). Further development of this tool will be directed at providing additional analyses to clarify complex network interactions between miRNAs, other classes of ncRNAs, and protein-coding genes and their involvement in development of diseases including cancer. This tool therefore provides curated relevant information about the miRNA basic research and therapeutic application all at hand on one site to help researchers and clinicians in making informed decision about their miRNA cancer–related research or clinical practice.
PLOS ONE | 2013
Irena Godnic; Minja Zorc; Daša Jevšinek Skok; George A. Calin; Simon Horvat; Peter Dovč; Milena Kovač; Tanja Kunej
MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) involved in regulation of gene expression. Intragenic miRNAs, especially those exhibiting a high degree of evolutionary conservation, have been shown to be coordinately regulated and/or expressed with their host genes, either with synergistic or antagonistic correlation patterns. However, the degree of cross-species conservation of miRNA/host gene co-location is not known and co-expression information is incomplete and fragmented among several studies. Using the genomic resources (miRBase and Ensembl) we performed a genome-wide in silico screening (GWISS) for miRNA/host gene pairs in three well-annotated vertebrate species: human, mouse, and chicken. Approximately half of currently annotated miRNA genes resided within host genes: 53.0% (849/1,600) in human, 48.8% (418/855) in mouse, and 42.0% (210/499) in chicken, which we present in a central publicly available Catalog of intragenic miRNAs (http://www.integratomics-time.com/miR-host/catalog). The miRNA genes resided within either protein-coding or ncRNA genes, which include long intergenic ncRNAs (lincRNAs) and small nucleolar RNAs (snoRNAs). Twenty-seven miRNA genes were found to be located within the same host genes in all three species and the data integration from literature and databases showed that most (26/27) have been found to be co-expressed. Particularly interesting are miRNA genes located within genes encoding for miRNA silencing machinery (DGCR8, DICER1, and SND1 in human and Cnot3, Gdcr8, Eif4e, Tnrc6b, and Xpo5 in mouse). We furthermore discuss a potential for phenotype misattribution of miRNA host gene polymorphism or gene modification studies due to possible collateral effects on miRNAs hosted within them. In conclusion, the catalog of intragenic miRNAs and identified 27 miRNA/host gene pairs with cross-species conserved co-location, co-expression, and potential co-regulation, provide excellent candidates for further functional annotation of intragenic miRNAs in health and disease.
Cell Death & Differentiation | 2013
J. Ferdin; Naohiro Nishida; Xue Wu; M. S. Nicoloso; M. Y. Shah; Cecilia M. Devlin; H. Ling; Masayoshi Shimizu; K. Kumar; M. A. Cortez; Manuela Ferracin; Yingtao Bi; Da Yang; Bogdan Czerniak; Wei Zhang; Thomas D. Schmittgen; M. P. Voorhoeve; Mauricio J. Reginato; Massimo Negrini; Ramana V. Davuluri; Tanja Kunej; Mircea Ivan; George A. Calin
Recent data have linked hypoxia, a classic feature of the tumor microenvironment, to the function of specific microRNAs (miRNAs); however, whether hypoxia affects other types of noncoding transcripts is currently unknown. Starting from a genome-wide expression profiling, we demonstrate for the first time a functional link between oxygen deprivation and the modulation of long noncoding transcripts from ultraconserved regions, termed transcribed-ultraconserved regions (T-UCRs). Interestingly, several hypoxia-upregulated T-UCRs, henceforth named ‘hypoxia-induced noncoding ultraconserved transcripts’ (HINCUTs), are also overexpressed in clinical samples from colon cancer patients. We show that these T-UCRs are predominantly nuclear and that the hypoxia-inducible factor (HIF) is at least partly responsible for the induction of several members of this group. One specific HINCUT, uc.475 (or HINCUT-1) is part of a retained intron of the host protein-coding gene, O-linked N-acetylglucosamine transferase, which is overexpressed in epithelial cancer types. Consistent with the hypothesis that T-UCRs have important function in tumor formation, HINCUT-1 supports cell proliferation specifically under hypoxic conditions and may be critical for optimal O-GlcNAcylation of proteins when oxygen tension is limiting. Our data gives a first glimpse of a novel functional hypoxic network comprising protein-coding transcripts and noncoding RNAs (ncRNAs) from the T-UCRs category.
Critical Reviews in Clinical Laboratory Sciences | 2014
Tanja Kunej; Jana Obsteter; Ziva Pogacar; Simon Horvat; George A. Calin
Abstract Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as “transcriptional noise”, lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve as novel biomarkers for diagnostic, prognostic and monitoring purposes. (9) Tissue specificity of lncRNAs enables the development of selective therapeutic options. (10) Long non-coding RNAs are emerging as commercial biomarkers and therapeutic agents.