Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanja Opriessnig is active.

Publication


Featured researches published by Tanja Opriessnig.


Journal of Veterinary Diagnostic Investigation | 2007

Porcine circovirus type 2-associated disease : Update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies

Tanja Opriessnig; Xiang-Jin Meng; Patrick G. Halbur

Porcine circovirus type 2 (PCV2)–associated disease (PCVAD) continues to be an important differential diagnosis on pig farms in the United States and worldwide. Case trend analyses indicate that the incidence of PCVAD is on the rise in the United States. Accurate diagnosis is important in order to implement appropriate intervention strategies. PCVAD can manifest as a systemic disease, as part of the respiratory disease complex, as an enteric disease, as porcine dermatitis and nephropathy syndrome, or as reproductive problems. PCVAD may be only a sporadic individual animal diagnosis; however, PCVAD may also manifest as a severe herd problem accelerated and enhanced by concurrent virus or bacterial infections. This article is intended to discuss the most common disease manifestations, pathogenesis, diagnostic approaches, and intervention strategies associated with PCVAD in North America.


Mbio | 2013

Origin, Evolution, and Genotyping of Emergent Porcine Epidemic Diarrhea Virus Strains in the United States

Yao-Wei Huang; Allan W. Dickerman; Pablo Piñeyro; Long Li; Li Fang; Ross Kiehne; Tanja Opriessnig; Xiang-Jin Meng

ABSTRACT Coronaviruses are known to infect humans and other animals and cause respiratory and gastrointestinal diseases. Here we report the emergence of porcine epidemic diarrhea virus (PEDV) in the United States and determination of its origin, evolution, and genotypes based on temporal and geographical evidence. Histological lesions in small intestine sections of affected pigs and the complete genomic sequences of three emergent strains of PEDV isolated from outbreaks in Minnesota and Iowa were characterized. Genetic and phylogenetic analyses of the three U.S. strains revealed a close relationship with Chinese PEDV strains and their likely Chinese origin. The U.S. PEDV strains underwent evolutionary divergence, which can be classified into two sublineages. The three emergent U.S. strains are most closely related to a strain isolated in 2012 from Anhui Province in China, which might be the result of multiple recombination events between different genetic lineages or sublineages of PEDV. Molecular clock analysis of the divergent time based on the complete genomic sequences is consistent with the actual time difference, approximately 2 to 3 years, of the PED outbreaks between China (December 2010) and the United States (May 2013). The finding that the emergent U.S. PEDV strains share unique genetic features at the 5′-untranslated region with a bat coronavirus provided further support of the evolutionary origin of PEDV from bats and potential cross-species transmission. The data from this study have important implications for understanding the ongoing PEDV outbreaks in the United States and will guide future efforts to develop effective preventive and control measures against PEDV. IMPORTANCE The sudden emergence of porcine epidemic diarrhea virus (PEDV), a coronavirus, for the first time in the United States causes significant economic and public health concerns. Since its recognition in May 2013, PEDV has rapidly spread across the United States, resulting in high mortality in piglets in more than 17 States now. The ongoing outbreaks of Middle East respiratory syndrome coronavirus in humans from countries in or near the Arabian Peninsula and the historical deadly nature of the 2002 outbreaks of severe acute respiratory syndrome coronavirus create further anxiety over the emergence of PEDV in the United States due to the lack of scientific information about the origin and evolution of this emerging coronavirus. Here we report the detailed genetic characterization, origin, and evolution of emergent PEDV strains in the United States. The results provide much needed information to devise effective preventive and control strategies against PEDV in the United States. The sudden emergence of porcine epidemic diarrhea virus (PEDV), a coronavirus, for the first time in the United States causes significant economic and public health concerns. Since its recognition in May 2013, PEDV has rapidly spread across the United States, resulting in high mortality in piglets in more than 17 States now. The ongoing outbreaks of Middle East respiratory syndrome coronavirus in humans from countries in or near the Arabian Peninsula and the historical deadly nature of the 2002 outbreaks of severe acute respiratory syndrome coronavirus create further anxiety over the emergence of PEDV in the United States due to the lack of scientific information about the origin and evolution of this emerging coronavirus. Here we report the detailed genetic characterization, origin, and evolution of emergent PEDV strains in the United States. The results provide much needed information to devise effective preventive and control strategies against PEDV in the United States.


Journal of Virology | 2004

A Chimeric Porcine Circovirus (PCV) with the Immunogenic Capsid Gene of the Pathogenic PCV Type 2 (PCV2) Cloned into the Genomic Backbone of the Nonpathogenic PCV1 Induces Protective Immunity against PCV2 Infection in Pigs

M. Fenaux; Tanja Opriessnig; Patrick G. Halbur; François Elvinger; Xiang-Jin Meng

ABSTRACT Porcine circovirus type 2 (PCV2) is associated with postweaning multisystemic wasting syndrome in pigs, whereas PCV1 is nonpathogenic. We previously demonstrated that a chimeric PCV1-2 virus (with the immunogenic capsid gene of PCV2 cloned into the backbone of PCV1) induces an antibody response to the PCV2 capsid protein and is attenuated in pigs. Here, we report that the attenuated chimeric PCV1-2 induces protective immunity to wild-type PCV2 challenge in pigs. A total of 48 specific-pathogen-free piglets were randomly and equally assigned to four groups of 12 pigs each. Pigs in group 1 were vaccinated by intramuscular injection with 200 μg of the chimeric PCV1-2 infectious DNA clone. Pigs in group 2 were vaccinated by intralymphoid injection with 200 μg of a chimeric PCV1-2 infectious DNA clone. Pigs in group 3 were vaccinated by intramuscular injection with 103.5 50% tissue culture infective doses (TCID50) of the chimeric PCV1-2 live virus. Pigs in group 4 were not vaccinated and served as controls. By 42 days postvaccination (DPV), the majority of pigs had seroconverted to PCV2 capsid antibody. At 42 DPV, all pigs were challenged intranasally and intramuscularly with 2 × 104.5 TCID50 of a wild-type pathogenic PCV2 virus. By 21 days postchallenge (DPC), 9 out of the 12 group 4 pigs were viremic for PCV2. Vaccinated animals in groups 1 to 3 had no detectable PCV2 viremia after challenge. At 21 DPC the lymph nodes in the nonvaccinated pigs were larger (P < 0.05) than those of vaccinated pigs. The PCV2 genomic copy loads in lymph nodes were reduced (P < 0.0001) in vaccinated pigs. Moderate amounts of PCV2 antigen were detected in most lymphoid tissues of nonvaccinated pigs but in only 1 of 36 vaccinated pigs. Mild-to-severe lymphoid depletion and histiocytic replacement were detected in lymphoid tissues in the majority of nonvaccinated group 4 pigs but in only a few vaccinated group 1 to 3 pigs. The data from this study indicated that when given intramuscularly in pigs, the attenuated chimeric PCV1-2 live virus, as well as the chimeric PCV1-2 infectious DNA clone, induces protective immunity against PCV2 infection and could potentially serve as an effective vaccine.


Journal of Virology | 2002

Comparison of Molecular and Biological Characteristics of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine (Ingelvac PRRS MLV), the Parent Strain of the Vaccine (ATCC VR2332), ATCC VR2385, and Two Recent Field Isolates of PRRSV

Tanja Opriessnig; Patrick G. Halbur; Kyoung Jin Yoon; R. M. Pogranichniy; Karen M. Harmon; Rich Evans; K. F. Key; F. J. Pallares; P. Thomas; Xiang-Jin Meng

ABSTRACT The objectives of this study were to compare the molecular and biological characteristics of recent porcine reproductive and respiratory syndrome virus (PRRSV) field isolates to those of a modified live virus (MLV) PRRS vaccine and its parent strain. One hundred seventeen, 4-week-old pigs were randomly assigned to six groups. Group 1 (n = 20) served as sham-inoculated negative controls, group 2 (n = 19) was inoculated with Ingelvac PRRS MLV vaccine, group 3 (n = 20) was inoculated with the parent strain of the vaccine (ATCC VR2332), group 4 (n = 19) was inoculated with vaccine-like PRRSV field isolate 98-38803, group 5 (n = 19) was inoculated with PRRSV field isolate 98-37120, and group 6 (n = 20) was inoculated with known high-virulence PRRSV isolate ATCC VR2385. The levels of severity of gross lung lesions (0 to 100%) among the groups were significantly different at both 10 (P < 0.0001) and 28 days postinoculation (p.i.) (P = 0.002). At 10 days p.i., VR2332 (26.5% ± 4.64%) and VR2385 (36.4% ± 6.51%) induced gross lesions of significantly greater severity than 98-38803 (0.0% ± 0.0%), 98-37120 (0.8% ± 0.42%), Ingelvac PRRS MLV (0.9% ± 0.46%), and negative controls (2.3% ± 1.26%). At 28 days p.i., 98-37120 (17.2% ± 6.51%) induced gross lesions of significantly greater severity than any of the other viruses. Analyses of the microscopic-interstitial-pneumonia-lesion scores (0 to 6) revealed that VR2332 (2.9 ± 0.23) and VR2385 (3.1 ± 0.35) induced significantly more severe lesions at 10 days p.i. At 28 days p.i., VR2385 (2.5 ± 0.27), VR2332 (2.3 ± 0.21), 98-38803 (2.6 ± 0.29), and 98-37120 (3.0 ± 0.41) induced significantly more severe lesions than Ingelvac PRRS MLV (0.7 ± 0.17) and controls (0.7 ± 0.15). The molecular analyses and biological characterizations suggest that the vaccine-like isolate 98-38803 (99.5% amino acid homology based on the ORF5 gene) induces microscopic pneumonia lesions similar in type to, but different in severity and time of onset from, those observed with virulent strains VR2385 and the parent strain of the vaccine. Our data strongly suggest that isolate 98-38803 is a derivative of Ingelvac PRRS MLV and that the isolate is pneumovirulent.


Journal of Virology | 2003

Immunogenicity and Pathogenicity of Chimeric Infectious DNA Clones of Pathogenic Porcine Circovirus Type 2 (PCV2) and Nonpathogenic PCV1 in Weanling Pigs

M. Fenaux; Tanja Opriessnig; Patrick G. Halbur; Xiang-Jin Meng

ABSTRACT Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS), whereas the ubiquitous porcine circovirus type 1 (PCV1) is nonpathogenic for pigs. We report here the construction and characterization of two chimeric infectious DNA clones of PCV1 and PCV2. The chimeric PCV1-2 clone contains the PCV2 capsid gene cloned in the backbone of the nonpathogenic PCV1 genome. A reciprocal chimeric PCV2-1 DNA clone was also constructed by replacing the PCV2 capsid gene with that of PCV1 in the backbone of the PCV2 genome. The PCV1, PCV2, and chimeric PCV1-2 and PCV2-1 DNA clones were all shown to be infectious in PK-15 cells, and their growth characteristics in vitro were determined and compared. To evaluate the immunogenicity and pathogenicity of the chimeric infectious DNA clones, 40 specific-pathogen-free (SPF) pigs were randomly assigned into five groups of eight pigs each. Group 1 pigs received phosphate-buffered saline as the negative control. Group 2 pigs were each injected in the superficial inguinal lymph nodes with 200 μg of the PCV1 infectious DNA clone. Group 3 pigs were each similarly injected with 200 μg of the PCV2 infectious DNA clone, group 4 pigs were each injected with 200 μg of the chimeric PCV1-2 infectious DNA clone, and group 5 pigs were each injected with 200 μg of the reciprocal chimeric PCV2-1 infectious DNA clone. As expected, seroconversion to antibodies to the PCV2 capsid antigen was detected in group 3 and group 4 pigs. Group 2 and 5 pigs all seroconverted to PCV1 antibody. Gross and microscopic lesions in various tissues of animals inoculated with the PCV2 infectious DNA clone were significantly more severe than those found in pigs inoculated with PCV1, chimeric PCV1-2, and reciprocal chimeric PCV2-1 infectious DNA clones. These data indicated that the chimeric PCV1-2 virus with the immunogenic ORF2 capsid gene of pathogenic PCV2 cloned into the nonpathogenic PCV1 genomic backbone induces a specific antibody response to the pathogenic PCV2 capsid antigen but is attenuated in pigs. Future studies are warranted to evaluate the usefulness of the chimeric PCV1-2 infectious DNA clone as a genetically engineered live-attenuated vaccine against PCV2 infection and PMWS.


Animal Health Research Reviews | 2011

Polymicrobial respiratory disease in pigs

Tanja Opriessnig; Luis G. Giménez-Lirola; Patrick G. Halbur

Abstract Respiratory disease in pigs is common in modern pork production worldwide and is often referred to as porcine respiratory disease complex (PRDC). PRDC is polymicrobial in nature, and results from infection with various combinations of primary and secondary respiratory pathogens. As a true multifactorial disease, environmental conditions, population size, management strategies and pig-specific factors such as age and genetics also play critical roles in the outcome of PRDC. While non-infectious factors are important in the initiation and outcome of cases of PRDC, the focus of this review is on infectious factors only. There are a variety of viral and bacterial pathogens commonly associated with PRDC including porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO) and Pasteurella multocida (PMULT). The pathogenesis of viral respiratory disease is typically associated with destruction of the mucocilliary apparatus and with interference and decrease of the function of pulmonary alveolar and intravascular macrophages. Bacterial pathogens often contribute to PRDC by activation of inflammation via enhanced cytokine responses. With recent advancements in pathogen detection methods, the importance of polymicrobial disease has become more evident, and identification of interactions of pathogens and their mechanisms of disease potentiation has become a topic of great interest. For example, combined infection of pigs with typically low pathogenic organisms like PCV2 and MHYO results in severe respiratory disease. Although the body of knowledge has advanced substantially in the last 15 years, much more needs to be learned about the pathogenesis and best practices for control of swine respiratory disease outbreaks caused by concurrent infection of two or more pathogens. This review discusses the latest findings on polymicrobial respiratory disease in pigs.


Journal of Virology | 2007

Initiation at the Third In-Frame AUG Codon of Open Reading Frame 3 of the Hepatitis E Virus Is Essential for Viral Infectivity In Vivo

Yao-Wei Huang; Tanja Opriessnig; Patrick G. Halbur; Xiang-Jin Meng

ABSTRACT To determine the initiation strategy of the hepatitis E virus (HEV) open reading frame 3 (ORF3), we constructed five HEV mutants with desired mutations in the ORF1 and ORF2 junction region and tested their levels of in vivo infectivity in pigs. A mutant with a C-terminally truncated ORF3 is noninfectious in pigs, indicating that an intact ORF3 is required for in vivo infectivity. Mutations with substitutions in the first in-frame AUG in the junction region or with the same T insertion at the corresponding position of HEV genotype 4 did not affect the virus infectivity or rescue, although mutations with combinations of the two affected virus recovery efficiency, and a single mutation at the third in-frame AUG completely abolished virus infectivity in vivo, indicating that the third in-frame AUG in the junction region is required for virus infection and is likely the authentic initiation site for ORF3. A conserved double stem-loop RNA structure, which may be important for HEV replication, was identified in the junction region. This represents the first report of using a unique homologous pig model system to study the molecular mechanism of HEV replication and to systematically and definitively identify the authentic ORF3 initiation site.


Clinical and Vaccine Immunology | 2005

Effects of Porcine Circovirus Type 2 (PCV2) Maternal Antibodies on Experimental Infection of Piglets with PCV2

N. E. McKeown; Tanja Opriessnig; P. Thomas; D. K. Guenette; François Elvinger; M. Fenaux; Patrick G. Halbur; X.J. Meng

ABSTRACT To determine the effects of porcine circovirus type 2 (PCV2) maternal antibodies on and response to experimental PCV2 infection, 24 piglets were divided into four groups on the basis of the enzyme-linked immunosorbent assay titers of PCV2 maternal antibodies: group A (n = 6; sample/positive [S/P] ratio, <0.2), group B (n = 5; S/P ratio, >0.2 to <0.5), and groups C (n = 8) and D (n = 5) (S/P ratio, >0.5). Piglets in groups A, B, and C were inoculated with PCV2 at day 0 and challenged with PCV2 at day 42. Group D piglets were not exposed to PCV2 at day 0 but were challenged at day 42. Before challenge, seroconversion to PCV2 antibodies occurred in five of six group A piglets, and the antibody level rose above the cutoff level in one of five group B piglets. Viremia was detected in five of six, four of five, and two of eight pigs in groups A, B, and C, respectively. After challenge, PCV2 DNA was detectable from 7 to 21 days postchallenge in the sera from six of six, four of five, three of eight, and five of five pigs in groups A, B, C, and D, respectively. The results indicated that protection against PCV2 infection conferred by maternal antibodies is titer dependent: higher titers are generally protective, but low titers are not.


Journal of Veterinary Diagnostic Investigation | 2002

Porcine Circovirus Type 2 (PCV-2) Coinfections in US Field Cases of Postweaning Multisystemic Wasting Syndrome (PMWS)

Francisco J. Pallarés; Patrick G. Halbur; Tanja Opriessnig; Steven D. Sorden; David Villar; B.H. Janke; M.J. Yaeger; David J. Larson; Kent J. Schwartz; Kyoung Jin Yoon; Lorraine J. Hoffman

The prevalence of different pathogens detected in combination with porcine circovirus type 2 (PCV-2) was studied retrospectively in field cases of postweaning multisystemic wasting syndrome (PMWS) diagnosed at the Iowa State University Veterinary Diagnostic Laboratory, Ames, Iowa, between January 2000, and September 2001. The presence of PCV-2 antigen in lymphoid tissues and/or lung, demonstrated by immunohistochemistry, together with moderate to severe lymphoid depletion and/or granulomatous lymphadenitis, was used as the criteria for the diagnosis of PMWS. A total of 484 cases fulfilled these criteria. Most of the cases (294/369) of PMWS occurred in pigs between the ages of 8 and 18 weeks, with a peak at 10 weeks of age. Porcine reproductive and respiratory syndrome virus was detected in 51.9% of the cases, Mycoplasma hyopneumoniae in 35.5%, bacterial septicemia in 14.0%, bacterial pneumonia in 7.6%, swine influenza virus in 5.4%, and PCV-2 alone in 1.9%. In cases with bacterial septicemia the most frequently isolated pathogen was Streptoccocus suis. In cases with bacterial pneumonia, Pasteurella multocida was the most prevalent.


Veterinary Pathology | 2006

Evidence of Breed-dependent Differences in Susceptibility to Porcine Circovirus Type-2-associated Disease and Lesions

Tanja Opriessnig; M. Fenaux; P. Thomas; M. J. Hoogland; M. F. Rothschild; Xiang-Jin Meng; Patrick G. Halbur

Porcine circovirus type 2 (PCV2) has been confirmed as the primary cause of postweaning multisystemic wasting syndrome (PMWS). However, in the field, PMWS is seen only in a small percentage of pigs infected with PCV2. The overall objective of the study reported here was to determine whether host genetic differences in the susceptibility to PCV2-associated disease exist among selected breeds of pigs. This study included Duroc (n = 23), Landrace (n = 19), and Large White (n = 21) pigs. The pigs were infected intranasally and intramuscularly at 5-7 weeks of age with PCV2. A portion of the pigs (31/63; 30.2%) had low passively acquired PCV2 antibodies at the time of infection. There were no differences in mean weight gain, rectal temperature, or respiratory score. Clinical disease compatible with PMWS was observed only in the Landrace pigs. Most of the PCV2-infected pigs had enlarged lymph nodes, and individual Duroc and Landrace pigs had mottled tan lungs. PCV2-associated lymphoid depletion and granulomatous inflammation were observed in pigs of all breeds. Three of 19 Landrace pigs and none of the Duroc or Large White pigs developed severe lymphoid lesions associated with large amounts of intralesional PCV2 antigen typical of PMWS. Compared with seronegative Landrace pigs, Landrace pigs that had low maternal antibodies at the time of PCV2 inoculation had significantly (P < 0.05) less-severe PCV2-associated lesions. The results suggest a predisposition of the Landrace pigs of this study to PCV2-induced disease and lesions, and that low levels of passively acquired antibodies are protective.

Collaboration


Dive into the Tanja Opriessnig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge