Tanja Stankovic
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanja Stankovic.
Cell | 1999
Grant S. Stewart; Richard S. Maser; Tanja Stankovic; Debra A. Bressan; Mark I. Kaplan; Nikolaas G.J Jaspers; Anja Raams; Philip J. Byrd; John H.J. Petrini; A. Malcolm R. Taylor
We show that hypomorphic mutations in hMRE11, but not in ATM, are present in certain individuals with an ataxia-telangiectasia-like disorder (ATLD). The cellular features resulting from these hMRE11 mutations are similar to those seen in A-T as well as NBS and include hypersensitivity to ionizing radiation, radioresistant DNA synthesis, and abrogation of ATM-dependent events, such as the activation of Jun kinase following exposure to gamma irradiation. Although the mutant hMre11 proteins retain some ability to interact with hRad50 and Nbs1, formation of ionizing radiation-induced hMre11 and Nbs1 foci was absent in hMRE11 mutant cells. These data demonstrate that ATM and the hMre11/hRad50/Nbs1 protein complex act in the same DNA damage response pathway and link hMre11 to the complex pathology of A-T.
American Journal of Human Genetics | 1998
Tanja Stankovic; A.M.J. Kidd; A. Sutcliffe; G.M. McGuire; P. Robinson; P. Weber; T. Bedenham; A.R. Bradwell; D.F. Easton; G.G. Lennox; N. Haites; Philip J. Byrd; A.M.R. Taylor
We report the spectrum of 59 ATM mutations observed in ataxia-telangiectasia (A-T) patients in the British Isles. Of 51 ATM mutations identified in families native to the British Isles, 11 were founder mutations, and 2 of these 11 conferred a milder clinical phenotype with respect to both cerebellar degeneration and cellular features. We report, in two A-T families, an ATM mutation (7271T-->G) that may be associated with an increased risk of breast cancer in both homozygotes and heterozygotes (relative risk 12.7; P=. 0025), although there is a less severe A-T phenotype in terms of the degree of cerebellar degeneration. This mutation (7271T-->G) also allows expression of full-length ATM protein at a level comparable with that in unaffected individuals. In addition, we have studied 18 A-T patients, in 15 families, who developed leukemia, lymphoma, preleukemic T-cell proliferation, or Hodgkin lymphoma, mostly in childhood. A wide variety of ATM mutation types, including missense mutations and in-frame deletions, were seen in these patients. We also show that 25% of all A-T patients carried in-frame deletions or missense mutations, many of which were also associated with expression of mutant ATM protein.
Blood | 2010
Oliver Goodyear; Angelo Agathanggelou; Igor Novitzky-Basso; Shamyla Siddique; Tina McSkeane; Gordon Ryan; Paresh Vyas; Jamie Cavenagh; Tanja Stankovic; Paul Moss; Charles Craddock
Epigenetic therapies, including DNA methyltransferase and histone deacetylase inhibitors, represent important new treatment modalities in hematologic malignancies, but their mechanism of action remains unknown. We reasoned that up-regulation of epigenetically silenced tumor antigens may induce an immunologically mediated antitumor response and contribute to their clinical activity. In this study, we demonstrate that azacitidine (AZA) and sodium valproate (VPA) up-regulate expression of melanoma-associated antigens (MAGE antigens) on acute myeloid leukemia (AML) and myeloma cell lines. In separate studies, we observed that prior exposure to AZA/VPA increased recognition of myeloma cell lines by a MAGE-specific CD8(+) cytotoxic T-lymphocyte (CTL) clone. We therefore measured CTL responses to MAGE antigens in 21 patients with AML or myelodysplasia treated with AZA/VPA. CTL responses to MAGE antigens were documented in only 1 patient before therapy; however, treatment with AZA/VPA induced a CTL response in 10 patients. Eight of the 11 patients with circulating MAGE CTLs achieved a major clinical response after AZA/VPA therapy. This is the first demonstration of a MAGE-specific CTL response in AML. Furthermore, it appears that epigenetic therapies have the capacity to induce a CTL response to MAGE antigens in vivo that may contribute to their clinical activity in AML.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Grant S. Stewart; Tanja Stankovic; Philip J. Byrd; T. Wechsler; Edward S. Miller; A. Huissoon; M. T. Drayson; Stephen C. West; Stephen J. Elledge; A.M.R. Taylor
Cellular DNA double-strand break-repair pathways have evolved to protect the integrity of the genome from a continual barrage of potentially detrimental insults. Inherited mutations in genes that control this process result in an inability to properly repair DNA damage, ultimately leading to developmental defects and also cancer predisposition. Here, we describe a patient with a previously undescribed syndrome, which we have termed RIDDLE syndrome (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties), whose cells lack an ability to recruit 53BP1 to sites of DNA double-strand breaks. As a consequence, cells derived from this patient exhibit a hypersensitivity to ionizing radiation, cell cycle checkpoint abnormalities, and impaired end-joining in the recombined switch regions. Sequencing of TP53BP1 and other genes known to regulate ionizing radiation-induced 53BP1 foci formation in this patient failed to detect any mutations. Therefore, these data indicate the existence of a DNA double-strand break-repair protein that functions upstream of 53BP1 and contributes to the normal development of the human immune system.
Epigenetics | 2012
Thoraia Shinawi; Victoria Hill; Antonis Dagklis; Panagiotis Baliakas; Kostas Stamatopoulos; Angleo Agathanggelou; Tanja Stankovic; Eamonn R. Maher; Paolo Ghia; Farida Latif
Ras-association domain family (RASSF) members are a family of genes containing an RA domain in either the C-terminus (RASSF1-RASSF6) or in the N-terminus (RASSF7-RASSF10). Members of this gene family are core members of the Salvador/Warts/Hippo (SWH) tumor suppressor network and have been shown to be involved in human tumorigenesis. Among the RASSF genes, RASSF1A is one of the most frequently methylated genes in a wide range of epithelial cancers, and we previously demonstrated that RASSF6 and RASSF10 genes are frequently epigenetically inactivated in acute leukemias, particularly in those of the B cell type. We here determined the methylation profiles of all members of the RASSF gene family as well as two recently identified (KIBRA, CRB3) upstream members of the SWH pathway in the leukemic B cells obtained from a well-characterized cohort of 95 patients with chronic lymphocytic leukemia (CLL). Among the RASSF genes, RASSF10 (50%) was the most frequently methylated gene, followed by RASSF6 (16%). The remaining RASSF genes were either unmethylated or showed a frequency of methylation < 10%. The upstream SWH member KIBRA was also frequently methylated in CLL (35%) in contrast to CRB3. Interestingly, the analysis of clinical-pathological parameters showed that KIBRA methylation was associated with unfavorable biological prognostic parameters, including unmutated IGHV genes (p = 0.007) and high CD38 expression (p < 0.05).
Bioinformatics | 2008
Katrin Sameith; Philipp Antczak; Elliot Marston; Nil Turan; Dieter Maier; Tanja Stankovic; Francesco Falciani
MOTIVATION Childhood B-precursor lymphoblastic leukaemia (ALL) is the most common paediatric malignancy. Despite the fact that 80% of ALL patients respond to anti-cancer drugs, the patho-physiology of this disease is still not fully understood. mRNA expression-profiling studies that have been performed have not yet provided novel insights into the mechanisms behind cellular response to DNA damage. More powerful data analysis techniques may be required for identifying novel functional pathways involved in the cellular responses to DNA damage. RESULTS In order to explore the possibility that unforeseen biological processes may be involved in the response to DNA damage, we have developed and applied a novel procedure for the identification of functional modules in ALL cells. We have discovered that the overall activity of functional modules integrating protein degradation and mRNA processing is predictive of response to DNA damage. AVAILABILITY Supplementary material including R code, additional results, experimental datasets, as well as a detailed description of the methodology are available at http://www.bip.bham.ac.uk/vivo/fumo.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
PLOS ONE | 2008
Likun Du; Deborah K. Dunn-Walters; Krystyna H. Chrzanowska; Tanja Stankovic; Ashwin Kotnis; Xin Li; Jiayi Lu; Gösta Eggertsen; Claire Brittain; Sergey W. Popov; Andrew R. Gennery; A. Malcolm R. Taylor; Qiang Pan-Hammarström
Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (VH) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the VH genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis.
Leukemia Research | 2012
Anne Gardiner; Helen Parker; Sharron Glide; H M Robinson; Ian Tracy; Tanja Stankovic; David Oscier; Jon C. Strefford
Deletion of ATM detected by fluorescent in situ hybridization (FISH) in chronic lymphocytic leukemia predicts short treatment free survival and poor outcome following alkylator/purine analogue therapy. We describe five cases, with a diminished ATM FISH signal, investigated by TP53 mutation/dysfunction studies and single nucleotide polymorphism (SNP) array. The diminished signal represented loss of the ATM gene, which could have been missed were the cases not further investigated. These rare cases highlight the need for careful consideration of the choice of probe and interpretation of unusual signal patterns in FISH screening. We define a new minimal region of deletion at 11q22.3.
American Journal of Human Genetics | 1996
C. M. McConville; Tanja Stankovic; Philip J. Byrd; G.M. McGuire; Q. Y. Yao; G.G. Lennox; M. R. Taylor
Journal of Biological Chemistry | 2001
Grant S. Stewart; Tanja Stankovic; Neva Elizabeth Haites; Avril Kidd; Philip J. Byrd; A.M.R. Taylor