Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanja Zeller is active.

Publication


Featured researches published by Tanja Zeller.


The New England Journal of Medicine | 2009

Sensitive Troponin I Assay in Early Diagnosis of Acute Myocardial Infarction

Till Keller; Tanja Zeller; Dirk Peetz; Stergios Tzikas; Alexander Röth; Ewa Czyz; Christoph Bickel; Stephan Baldus; Ascan Warnholtz; Meike Fröhlich; Christoph Sinning; Medea Eleftheriadis; Philipp S. Wild; Renate B. Schnabel; Edith Lubos; Nicole Jachmann; Sabine Genth-Zotz; Felix Post; Viviane Nicaud; Laurence Tiret; Karl J. Lackner; Thomas Münzel; Stefan Blankenberg

BACKGROUND Cardiac troponin testing is central to the diagnosis of acute myocardial infarction. We evaluated a sensitive troponin I assay for the early diagnosis and risk stratification of myocardial infarction. METHODS In a multicenter study, we determined levels of troponin I as assessed by a sensitive assay, troponin T, and traditional myocardial necrosis markers in 1818 consecutive patients with suspected acute myocardial infarction, on admission and 3 hours and 6 hours after admission. RESULTS For samples obtained on admission, the diagnostic accuracy was highest with the sensitive troponin I assay (area under the receiver-operating-characteristic curve [AUC], 0.96), as compared with the troponin T assay (AUC, 0.85) and traditional myocardial necrosis markers. With the use of the sensitive troponin I assay (cutoff value, 0.04 ng per milliliter) on admission, the clinical sensitivity was 90.7%, and the specificity was 90.2%. The diagnostic accuracy was virtually identical in baseline and serial samples, regardless of the time of chest-pain onset. In patients presenting within 3 hours after chest-pain onset, a single sensitive troponin I assay had a negative predictive value of 84.1% and a positive predictive value of 86.7%; these findings predicted a 30% rise in the troponin I level within 6 hours. A troponin I level of more than 0.04 ng per milliliter was independently associated with an increased risk of an adverse outcome at 30 days (hazard ratio, 1.96; 95% confidence interval, 1.27 to 3.05; P=0.003). CONCLUSIONS The use of a sensitive assay for troponin I improves early diagnosis of acute myocardial infarction and risk stratification, regardless of the time of chest-pain onset.


PLOS ONE | 2010

Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility

Tanja Zeller; Philipp S. Wild; Silke Szymczak; Maxime Rotival; Arne Schillert; Raphaële Castagné; Seraya Maouche; Marine Germain; Karl J. Lackner; Heidi Rossmann; Medea Eleftheriadis; Christoph Sinning; Renate B. Schnabel; Edith Lubos; Detlev Mennerich; Werner Rust; Claire Perret; Carole Proust; Viviane Nicaud; Joseph Loscalzo; Norbert Hubner; David Tregouet; Thomas Münzel; Andreas Ziegler; Laurence Tiret; Stefan Blankenberg; François Cambien

Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment.


Nature Genetics | 2009

New susceptibility locus for coronary artery disease on chromosome 3q22.3

Jeanette Erdmann; Anika Großhennig; Peter S. Braund; Inke R. König; Christian Hengstenberg; Alistair S. Hall; Patrick Linsel-Nitschke; Sekar Kathiresan; Ben Wright; David-Alexandre Trégouët; François Cambien; Petra Bruse; Zouhair Aherrahrou; Arnika K. Wagner; Klaus Stark; Stephen M. Schwartz; Veikko Salomaa; Roberto Elosua; Olle Melander; Benjamin F. Voight; Christopher J. O'Donnell; Leena Peltonen; David S. Siscovick; David Altshuler; Piera Angelica Merlini; Flora Peyvandi; Luisa Bernardinelli; Diego Ardissino; Arne Schillert; Stefan Blankenberg

We present a three-stage analysis of genome-wide SNP data in 1,222 German individuals with myocardial infarction and 1,298 controls, in silico replication in three additional genome-wide datasets of coronary artery disease (CAD) and subsequent replication in ∼25,000 subjects. We identified one new CAD risk locus on 3q22.3 in MRAS (P = 7.44 × 10−13; OR = 1.15, 95% CI = 1.11–1.19), and suggestive association with a locus on 12q24.31 near HNF1A-C12orf43 (P = 4.81 × 10−7; OR = 1.08, 95% CI = 1.05–1.11).


JAMA | 2011

Serial Changes in Highly Sensitive Troponin I Assay and Early Diagnosis of Myocardial Infarction

Till Keller; Tanja Zeller; Francisco Ojeda; Stergios Tzikas; Lars Lillpopp; Christoph Sinning; Philipp S. Wild; Sabine Genth-Zotz; Ascan Warnholtz; Evangelos Giannitsis; Martin Möckel; Christoph Bickel; Dirk Peetz; Karl J. Lackner; Stephan Baldus; Thomas Münzel; Stefan Blankenberg

CONTEXT Introduction of highly sensitive troponin assays into clinical practice has substantially improved the evaluation of patients with chest pain. OBJECTIVE To evaluate the diagnostic performance of a highly sensitive troponin I (hsTnI) assay compared with a contemporary troponin I (cTnI) assay and their serial changes in the diagnosis of acute myocardial infarction (AMI). DESIGN, SETTING, AND PATIENTS A total of 1818 patients with suspected acute coronary syndrome were consecutively enrolled at the chest pain units of the University Heart Center Hamburg, the University Medical Center Mainz, and the Federal Armed Forces Hospital Koblenz, all in Germany, from 2007 to 2008. Twelve biomarkers including hsTnI (level of detection, 3.4 pg/mL) and cTnI (level of detection, 10 pg/mL) were measured on admission and after 3 and 6 hours. MAIN OUTCOME MEASURES Diagnostic performance for AMI of baseline and serial changes in hsTnI and cTnI results at 3 hours after admission to the emergency department. RESULTS Of the 1818 patients, 413 (22.7%) were diagnosed as having AMI. For discrimination of AMI, the area under the receiver operating characteristic (ROC) curve was 0.96 (95% CI, 0.95-0.97) for hsTnI on admission and 0.92 (95% CI, 0.90-0.94) for cTnI on admission. Both were superior to the other evaluated diagnostic biomarkers. The use of hsTnI at admission (with the diagnostic cutoff value at the 99th percentile of 30 pg/mL) had a sensitivity of 82.3% and a negative predictive value (for ruling out AMI) of 94.7%. The use of cTnI (with the diagnostic cutoff value at the 99th percentile of 32 pg/mL) at admission had a sensitivity of 79.4% and a negative predictive value of 94.0%. Using levels obtained at 3 hours after admission, the sensitivity was 98.2% and the negative predictive value was 99.4% for both hsTnI and cTnI assays. Combining the 99th percentile cutoff at admission with the serial change in troponin concentration within 3 hours, the positive predictive value (for ruling in AMI) for hsTnI increased from 75.1% at admission to 95.8% after 3 hours, and for cTnI increased from 80.9% at admission to 96.1% after 3 hours. CONCLUSIONS Among patients with suspected acute coronary syndrome, hsTnI or cTnI determination 3 hours after admission may facilitate early rule-out of AMI. A serial change in hsTnI or cTnI levels from admission (using the 99th percentile diagnostic cutoff value) to 3 hours after admission may facilitate an early diagnosis of AMI.


Circulation | 2010

Contribution of 30 Biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: The MONICA, risk, genetics, archiving and monograph (MORGAM) biomarker project

Stefan Blankenberg; Tanja Zeller; Olli Saarela; Aki S. Havulinna; Frank Kee; Hugh Tunstall-Pedoe; Kari Kuulasmaa; John Yarnell; Renate B. Schnabel; Philipp S. Wild; Thomas Münzel; Karl J. Lackner; Laurence Tiret; Alun Evans; Veikko Salomaa

Background— Cardiovascular risk estimation by novel biomarkers needs assessment in disease-free population cohorts, followed up for incident cardiovascular events, assaying the serum and plasma archived at baseline. We report results from 2 cohorts in such a continuing study. Methods and Results— Thirty novel biomarkers from different pathophysiological pathways were evaluated in 7915 men and women of the FINRISK97 population cohort with 538 incident cardiovascular events at 10 years (fatal or nonfatal coronary or stroke events), from which a biomarker score was developed and then validated in the 2551 men of the Belfast Prospective Epidemiological Study of Myocardial Infarction (PRIME) cohort (260 events). No single biomarker consistently improved risk estimation in FINRISK97 men and FINRISK97 women and the Belfast PRIME Men cohort after allowing for confounding factors; however, the strongest associations (with hazard ratio per SD in FINRISK97 men) were found for N-terminal pro-brain natriuretic peptide (1.23), C-reactive protein (1.23), B-type natriuretic peptide (1.19), and sensitive troponin I (1.18). A biomarker score was developed from the FINRISK97 cohort with the use of regression coefficients and lasso methods, with selection of troponin I, C-reactive protein, and N-terminal pro-brain natriuretic peptide. Adding this score to a conventional risk factor model in the Belfast PRIME Men cohort validated it by improved c-statistics (P=0.004) and integrated discrimination (P<0.0001) and led to significant reclassification of individuals into risk categories (P=0.0008). Conclusions— The addition of a biomarker score including N-terminal pro-brain natriuretic peptide, C-reactive protein, and sensitive troponin I to a conventional risk model improved 10-year risk estimation for cardiovascular events in 2 middle-aged European populations. Further validation is needed in other populations and age groups.


Journal of the American College of Cardiology | 2010

Copeptin Improves Early Diagnosis of Acute Myocardial Infarction

Till Keller; Stergios Tzikas; Tanja Zeller; Ewa Czyz; Lars Lillpopp; Francisco M. Ojeda; Alexander Roth; Christoph Bickel; Stephan Baldus; Christoph Sinning; Philipp S. Wild; Edith Lubos; Dirk Peetz; Jan Kunde; Oliver Hartmann; Andreas Bergmann; Felix Post; Karl J. Lackner; Sabine Genth-Zotz; Viviane Nicaud; Laurence Tiret; Thomas Münzel; Stefan Blankenberg

OBJECTIVES Early identification of myocardial infarction in chest pain patients is crucial to identify patients at risk and to maintain a fast treatment initiation. BACKGROUND The aim of the current investigation is to test whether determination of copeptin, an indirect marker for arginin-vasopressin, adds diagnostic information to cardiac troponin in early evaluation of patients with suspected myocardial infarction. METHODS Between January 2007 and July 2008, patients with suspected acute coronary syndrome were consecutively enrolled in this multicenter study. Copeptin, troponin T (TnT), myoglobin, and creatine kinase-myocardial band were determined at admission and after 3 and 6 h. RESULTS Of 1,386 (66.4% male) enrolled patients, 299 (21.6%) had the discharge diagnosis of acute myocardial infarction, 184 (13.3%) presented with unstable angina, and in 903 (65.2%) an acute coronary syndrome could be excluded. Combined measurement of copeptin and TnT on admission improved the c-statistic from 0.84 for TnT alone to 0.93 in the overall population and from 0.77 to 0.9 in patients presenting within 3 h after chest pain onset (CPO) (p < 0.001). In this group the combination of copeptin with a conventional TnT provided a negative predictive value of 92.4%. CONCLUSIONS In triage of chest pain patients, determination of copeptin in addition to troponin improves diagnostic performance, especially early after CPO. Combined determination of troponin and copeptin provides a remarkable negative predictive value virtually independent of CPO time and therefore aids in early and safe rule-out of myocardial infarction.


Nature | 2010

A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

Matthias Heinig; Enrico Petretto; Chris Wallace; Leonardo Bottolo; Maxime Rotival; Han Lu; Yoyo Li; Rizwan Sarwar; Sarah R. Langley; Anja Bauerfeind; Oliver Hummel; Young-Ae Lee; Svetlana Paskas; Carola Rintisch; Kathrin Saar; Jason D. Cooper; Rachel Buchan; Elizabeth E. Gray; Jason G. Cyster; Jeanette Erdmann; Christian Hengstenberg; Seraya Maouche; Willem H. Ouwehand; Catherine M. Rice; Nilesh J. Samani; Heribert Schunkert; Alison H. Goodall; Herbert Schulz; Helge G. Roider; Martin Vingron

Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein–Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)—a macrophage-associated autoimmune disease—than randomly selected immune response genes (P = 8.85 × 10−6). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 × 10−10; odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D.


JAMA | 2009

Genetic variants associated with cardiac structure and function: A meta-analysis and replication of genome-wide association data

Nicole L. Glazer; Janine F. Felix; Wolfgang Lieb; Philipp S. Wild; Stephan B. Felix; Norbert Watzinger; Martin G. Larson; Nicholas L. Smith; Abbas Dehghan; Anika Großhennig; Arne Schillert; Alexander Teumer; Reinhold Schmidt; Sekar Kathiresan; Thomas Lumley; Yurii S. Aulchenko; Inke R. König; Tanja Zeller; Georg Homuth; Maksim Struchalin; Jayashri Aragam; Joshua C. Bis; Fernando Rivadeneira; Jeanette Erdmann; Renate B. Schnabel; Marcus Dörr; Robert Zweiker; Lars Lind; Richard J. Rodeheffer; Karin Halina Greiser

CONTEXT Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease. OBJECTIVE To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples. DESIGN, SETTING, AND PARTICIPANTS Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n = 12 612 individuals of European ancestry; 55% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n = 4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10(-7) to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort. MAIN OUTCOME MEASURES Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size. RESULTS In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1%-3% of trait variance). CONCLUSIONS We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their functional significance, and determine whether they are related to overt cardiovascular disease.


PLOS Genetics | 2014

Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population.

Elaine T. Lim; Peter Würtz; Aki S. Havulinna; Priit Palta; Taru Tukiainen; Karola Rehnström; Tonu Esko; Reedik Mägi; Michael Inouye; Tuuli Lappalainen; Yingleong Chan; Rany M. Salem; Monkol Lek; Jason Flannick; Xueling Sim; Alisa K. Manning; Claes Ladenvall; Suzannah Bumpstead; Eija Hämäläinen; Kristiina Aalto; Mikael Maksimow; Marko Salmi; Stefan Blankenberg; Diego Ardissino; Svati H. Shah; Benjamin D. Horne; Ruth McPherson; Gerald K. Hovingh; Muredach P. Reilly; Hugh Watkins

Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5–5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10−8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10−117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10−4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.


Circulation | 2011

Genome-wide Association Study for Coronary Artery Calcification with Follow-up in Myocardial Infarction

Christopher J. O'Donnell; Maryam Kavousi; Albert V. Smith; Sharon L.R. Kardia; Mary F. Feitosa; Shih Jen Hwang; Yan V. Sun; Michael A. Province; Thor Aspelund; Abbas Dehghan; Udo Hoffmann; Lawrence F. Bielak; Qunyuan Zhang; Gudny Eiriksdottir; Cornelia M. van Duijn; Caroline S. Fox; Mariza de Andrade; Aldi T. Kraja; Sigurdur Sigurdsson; Suzette E. Elias-Smale; Joanne M. Murabito; Lenore J. Launer; Aad van der Lugt; Sekar Kathiresan; Gabriel P. Krestin; David M. Herrington; Timothy D. Howard; Yongmei Liu; Wendy S. Post; Braxton D. Mitchell

Background— Coronary artery calcification (CAC) detected by computed tomography is a noninvasive measure of coronary atherosclerosis, which underlies most cases of myocardial infarction (MI). We sought to identify common genetic variants associated with CAC and further investigate their associations with MI. Methods and Results— Computed tomography was used to assess quantity of CAC. A meta-analysis of genome-wide association studies for CAC was performed in 9961 men and women from 5 independent community-based cohorts, with replication in 3 additional independent cohorts (n=6032). We examined the top single-nucleotide polymorphisms (SNPs) associated with CAC quantity for association with MI in multiple large genome-wide association studies of MI. Genome-wide significant associations with CAC for SNPs on chromosome 9p21 near CDKN2A and CDKN2B (top SNP: rs1333049; P=7.58×10−19) and 6p24 (top SNP: rs9349379, within the PHACTR1 gene; P=2.65×10−11) replicated for CAC and for MI. Additionally, there is evidence for concordance of SNP associations with both CAC and MI at a number of other loci, including 3q22 (MRAS gene), 13q34 (COL4A1/COL4A2 genes), and 1p13 (SORT1 gene). Conclusions— SNPs in the 9p21 and PHACTR1 gene loci were strongly associated with CAC and MI, and there are suggestive associations with both CAC and MI of SNPs in additional loci. Multiple genetic loci are associated with development of both underlying coronary atherosclerosis and clinical events.

Collaboration


Dive into the Tanja Zeller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge