Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanveer A. Khan is active.

Publication


Featured researches published by Tanveer A. Khan.


Gene Therapy | 2003

Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia

Tanveer A. Khan; Frank W. Sellke; Roger J. Laham

After extensive investigation in preclinical studies and recent clinical trials, gene therapy has been established as a potential method to induce therapeutic angiogenesis in ischemic myocardial and limb disease. Advancements in viral and nonviral vector technology including cell-based gene transfer will continue to improve transgene transmission and expression efficiency. An alternative strategy to the use of transgenes encoding angiogenic growth factors is therapy based on transcription factors such as hypoxia-inducible factor-1α (HIF-1α) that regulate the expression of multiple angiogenic genes. Further understanding of the underlying biology of neovascularization is needed to determine the ability of growth factors to induce functionally significant angiogenesis in patients with atherosclerotic disease and associated comorbid conditions including endothelial dysfunction, which may inhibit blood vessel growth. The safety and tolerability of therapeutic angiogenesis by gene transfer has been demonstrated in phase I clinical trials. However, limited evidence of efficacy resulted from early phase II studies of angiogenic gene therapy for ischemic myocardial and limb disease. The utility of therapeutic angiogenesis by gene transfer as a treatment option for ischemic cardiovascular disease will be determined by adequately powered, randomized, placebo-controlled phase II and III clinical trials.


Circulation | 2003

Inhibition of the Cardiac Angiogenic Response to Surgical FGF-2 Therapy in a Swine Endothelial Dysfunction Model

Marc Ruel; Gui Fu Wu; Tanveer A. Khan; Pierre Voisine; Cesario Bianchi; Jianyi Li; Jian Li; Roger J. Laham; Frank W. Sellke

Background—Discrepancy exists between the potent effects of therapeutic angiogenesis in laboratory animals and the marginal results observed in patients with advanced coronary artery disease. In vitro and small animal data suggest that angiogenesis may depend on locally available nitric oxide (NO), but the impact of endothelial dysfunction on therapeutic angiogenesis in the myocardium has been unclear. We compared the effects of clinically applicable angiogenesis methods in swine in which endothelial dysfunction was experimentally induced to that observed in normal swine. Methods and Results—Miniswine were fed either a regular (N=13) or hypercholesterolemic diet (N=13) for 20 weeks. Hypercholesterolemic swine showed coronary endothelial dysfunction on videomicroscopy. Animals from both groups received 100 &mgr;g of perivascular sustained-release fibroblast growth factor (FGF)-2 in the lateral myocardial territory, previously made ischemic by placement of an ameroid constrictor around the circumflex artery. After 4 weeks of FGF-2 therapy, lateral myocardial perfusion was significantly lower in hypercholesterolemic than in normocholesterolemic swine, both at rest and during pacing (0.44±0.04 versus 0.81±0.15 mL/min/g at rest, respectively; P =0.006; and 0.50±0.06 versus 0.71±0.10 mL/min/g during pacing; P =0.02). Hypercholesterolemic swine showed no net increase in perfusion from FGF-2 treatment. Endothelial cell density and FGF receptor-1 expression were significantly lower in the lateral territory of hypercholesterolemic versus normocholesterolemic animals. Conclusions—The cardiac angiogenic response to FGF-2 treatment using clinically applicable methods was markedly inhibited in hypercholesterolemic swine with coronary endothelial dysfunction. These findings suggest that coronary endothelial dysfunction is major obstacle to the efficacy of clinical angiogenesis protocols and constitutes a target toward making angiogenesis more effective in patients with advanced coronary disease.


The Journal of Thoracic and Cardiovascular Surgery | 2003

Gene expression profile after cardiopulmonary bypass and cardioplegic arrest

Marc Ruel; Cesario Bianchi; Tanveer A. Khan; Shu Xu; John R. Liddicoat; Pierre Voisine; Eugenio G. Araujo; Helen Lyon; Isaac S. Kohane; Towia A. Libermann; Frank W. Sellke

OBJECTIVE This study examines the cardiac and peripheral gene expression responses to cardiopulmonary bypass and cardioplegic arrest. METHODS Atrial myocardium and skeletal muscle were harvested from 16 patients who underwent coronary artery bypass grafting before and after cardiopulmonary bypass and cardioplegic arrest. Ten sample pairs were selected for patient similarity, and oligonucleotide microarray analyses of 12,625 genes were performed using matched precardiopulmonary bypass tissues as controls. Array results were validated with Northern blotting, real-time polymerase chain reaction, in situ hybridization, and immunoblotting. Statistical analyses were nonparametric. RESULTS Median durations of cardiopulmonary bypass and cardioplegic arrest were 74 and 60 minutes, respectively. Compared with precardiopulmonary bypass, postcardiopulmonary bypass myocardial tissues revealed 480 up-regulated and 626 down-regulated genes with a threshold P value of.025 or less (signal-to-noise ratio: 3.46); skeletal muscle tissues showed 560 and 348 such genes, respectively (signal-to-noise ratio: 3.04). Up-regulated genes in cardiac tissues included inflammatory and transcription activators FOS; jun B proto-oncogene; nuclear receptor subfamily 4, group A, member 3; MYC; transcription factor-8; endothelial leukocyte adhesion molecule-1; and cysteine-rich 61; apoptotic genes nuclear receptor subfamily 4, group A, member 1 and cyclin-dependent kinase inhibitor 1A; and stress genes dual-specificity phosphatase-1, dual-specificity phosphatase-5, and B-cell translocation gene 2. Up-regulated skeletal muscle genes included interleukin 6; interleukin 8; tumor necrosis factor receptor superfamily, member 11B; nuclear receptor subfamily 4, group A, member 3; transcription factor-8; interleukin 13; jun B proto-oncogene; interleukin 1B; glycoprotein Ib, platelet, alpha polypeptide; and Ras-associated protein RAB27A. Down-regulated genes included haptoglobin and numerous immunoglobulins in the heart, and factor H-related gene 2, protein phosphatase 1, regulatory subunit 3A, and growth differentiation factor-8 in skeletal muscle. CONCLUSIONS By establishing a profile of the gene-expression responses to cardiopulmonary bypass and cardioplegia, this study allows a better understanding of their effects and provides a framework for the evaluation of new cardiac surgical modalities directly at the genome level.


The Annals of Thoracic Surgery | 2002

A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs

Cesario Bianchi; Hidetaka Wakiyama; Renato Faro; Tanveer A. Khan; James D. McCully; Sidney Levitsky; Csaba Szabó; Frank W. Sellke

BACKGROUND Reactive oxygen and nitrogen species generated after reperfusion injury result in organ dysfunction. Peroxynitrite, a reactive nitrogen molecule produced from the reaction of superoxide anions and nitric oxide, is thought to be a causative agent in oxidative reperfusion injury. The aim of this study was to investigate the effects of a novel peroxynitrite decomposition catalyst (FP-15) in an acute myocardial ischemia/reperfusion model. METHODS Pigs were subjected to 60 minutes of regional ischemia by reversibly ligating the left anterior descending coronary artery followed by 180 minutes of reperfusion. In the treatment group (n = 6), an FP-15 (1 mg/kg) bolus was infused through the jugular vein after 30 minutes of ischemia followed by a continuous infusion (1 mg x kg(-1) x h(-1)) during reperfusion. Vehicle was infused in the control group (n = 6). Coronary flow was recorded by an ultrasonic flow probe and infarct size determined by tetrazolium staining. Arterial and left ventricular pressures were monitored continuously and regional myocardial function determined by sonomicrometry. RESULTS No significant differences were observed in either hemodynamics or ischemic area at risk. However, the infarct size was significantly reduced (35.3% +/- 3.5% versus 21.6% +/- 2.6% of the ischemic area, control versus FP-15-treated groups, respectively, p < 0.05). +dP/dt was transiently improved in the FP-15-treated groups while during most of the reperfusion period coronary flow, and was significantly lower in the FP-15-treated group as compared to the control group (p < 0.01). CONCLUSIONS FP-15 administration reduces myocardial infarct size and reactive hyperemia. These data support the pathogenic role of endogenously produced peroxynitrite and that FP-15 is effective in preventing myocardial reperfusion injury.


Circulation | 2004

Differences in Gene Expression Profiles of Diabetic and Nondiabetic Patients Undergoing Cardiopulmonary Bypass and Cardioplegic Arrest

Pierre Voisine; Marc Ruel; Tanveer A. Khan; Cesario Bianchi; Shu Hua Xu; Isaac S. Kohane; Towia A. Libermann; Hasan H. Otu; Alan R. Saltiel; Frank W. Sellke

Background—Diabetes mellitus is an independent risk factor for early postoperative mortality and complications after coronary artery bypass grafting (CABG). We sought to compare the cardiac gene expression responses to cardiopulmonary bypass (CPB) and cardioplegic arrest (C) in patients with and without diabetes. Methods and Results—Twenty atrial myocardium samples were harvested from 5 type II insulin-dependent diabetic and 5 matched nondiabetic patients undergoing CABG, before and after CPB/C. Oligonucleotide microarray analyses of 12625 genes were performed on the 10 sample pairs using matched pre-CPB tissues as controls. Array results were validated with Northern blotting and immunoblotting. Compared with pre-CPB/C, post-CPB/C myocardial tissues revealed 851 upregulated and 480 downregulated genes with a threshold P≤0.025 (signal-to-noise ratio, 4.04) in the diabetic group, compared with 480 upregulated and 626 downregulated genes (signal-to-noise ratio, 3.04) in the nondiabetic group (P<0.001). There were 18 genes that were upregulated >4-fold in diabetic and nondiabetic patients (including inflammatory/transcription activators FOS, CYR 61, and IL-6, apoptotic gene NR4A1, stress gene DUSP1, and glucose-transporter gene SLC2A3). However, 28 genes showed such marked upregulation in the diabetic group exclusively (including inflammatory/transcription activators MYC, IL8, IL-1&bgr;, growth factor vascular endothelial growth factor, amphiregulin, and glucose metabolism-involved gene insulin receptor substrate 1), and 27 genes in the nondiabetic group only, including glycogen-binding subunit PPP1R3C. Conclusions—Gene expression profile after CPB/C is quantitatively and qualitatively different in patients with diabetes. These results have important implications for the design of tailored myocardial protection and operative strategies for diabetic patients undergoing CPB/C.


Circulation | 2003

Mitogen-Activated Protein Kinase Inhibition and Cardioplegia-Cardiopulmonary Bypass Reduce Coronary Myogenic Tone

Tanveer A. Khan; Cesario Bianchi; Marc Ruel; Pierre Voisine; Jianyi Li; John R. Liddicoat; Frank W. Sellke

Background—Cardioplegia-cardiopulmonary bypass (C/CPB) is associated with coronary microcirculatory dysfunction. Regulation of the microcirculation includes myogenic tone. Mitogen-activated protein kinases (MAPK) have been implicated in coronary vasomotor function. We hypothesized that vasomotor dysfunction of the coronary microcirculation is mediated in part by alterations in extracellular signal regulated kinase 1/2 (ERK1/2) activity following C/CPB in humans. Methods and Results—Atrial myocardium was harvested from patients (n=15) before and after blood cardioplegia and short-term reperfusion under conditions of CPB. Myogenic tone of coronary arterioles was measured by videomicroscopy. Microvessel tone was determined post-C/CPB and after PD98059, a MAPK/ERK kinase 1/2 (MEK1/2) inhibitor. MAPK phosphatase-1 (MKP-1) and activated ERK1/2 were measured by Western blot. MKP-1 gene expression was determined by Northern blot. In situ hybridization and immunohistochemistry were used to localize myocardial MKP-1 and activated ERK1/2, respectively. Myogenic tone was reduced in coronary arterioles post-C/CPB (−10.5±0.9%, P <0.01 versus control/pre-C/CPB, n=5). Myogenic tone was decreased in coronary microvessels after 30 &mgr;mol/L (n=5) and 50 &mgr;mol/L (n=5) PD98059 treatment (−11.0±0.8% and −14.6±2.0%, respectively, both P <0.01 versus control/pre-C/CPB). Myocardial levels of activated ERK1/2 were reduced post-C/CPB (0.6±0.1, post/pre-C/CPB ratio, P <0.05, n=5) while MKP-1 levels increased (4.2±0.6, post/pre-C/CPB ratio, P <0.05, n=5). Myocardial MKP-1 gene expression increased post-C/CPB (3.0±0.8, post/pre-C/CPB ratio, P <0.05, n=5). MKP-1 and activated ERK1/2 localized to coronary arterioles in myocardial sections. Conculsions—Coronary myogenic tone is dependent on ERK1/2 and decreased after C/CPB. C/CPB reduces levels of activated ERK1/2, potentially by increased levels of MKP-1. The ERK1/2 signal transduction pathway in part mediates coronary microvascular dysfunction after C/CPB in humans.


Journal of The American College of Surgeons | 2003

Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass☆

Tanveer A. Khan; Marc Ruel; Cesario Bianchi; Pierre Voisine; Katalin Komjáti; Csaba Szabó; Frank W. Sellke

BACKGROUND Poly(ADP-ribose) polymerase activation has been shown to contribute to the pathogenesis of myocardial ischemia-reperfusion injury. We hypothesized that a novel poly(ADP-ribose) polymerase inhibitor, INO-1001, provides myocardial protection and improves cardiac function after regional ischemia and cardioplegia-cardiopulmonary bypass (CPB). STUDY DESIGN Pigs were subjected to 30 minutes of regional ischemia by distal left anterior descending coronary artery ligation followed by CPB (60 minutes) with hyperkalemic cardioplegia (45 minutes). The myocardium then was reperfused post-CPB for 90 minutes. After 15 minutes of ischemia, the treatment group (n = 6) received an INO-1001 bolus (1mg/kg) before a continuous infusion (1mg/kg/hour). Control pigs (n = 6) received vehicle solution. Left ventricular pressure was monitored, from which the maximum, positive first derivative of left ventricular pressure over time (+dP/dt) was calculated. Regional myocardial function in the ischemic area was determined by sonomicrometric analysis. Infarct size was measured as the percent of the ischemic area by tetrazolium staining. Myocardial sections were immunohistochemically stained for poly(ADP-ribose) as a measure of poly(ADP-ribose) polymerase activity and inhibition. RESULTS Pigs treated with INO-1001 showed improvements in the +dP/dt at 60 and 90 minutes of post-CPB reperfusion (both p = 0.03) and percent segmental shortening at 30, 60, and 90 minutes of post-CPB reperfusion (p = 0.03, 0.009, and 0.03, respectively). Infarct size was decreased in the treatment group (18.5 +/- 5.7% versus 52.0 +/- 7.7%, INO-1001 versus control, p = 0.03). Poly(ADP-ribose) was reduced in myocardial sections from INO-1001-treated animals compared with controls. CONCLUSIONS These results suggest that INO-1001 provides myocardial protection by reducing the extent of infarction and improves cardiac function after regional ischemia and cardioplegia-CPB.


Expert Review of Cardiovascular Therapy | 2004

Therapeutic angiogenesis for myocardial ischemia

Audrey Rosinberg; Tanveer A. Khan; Frank W. Sellke; Roger J. Laham

Therapeutic angiogenesis offers promise as a novel treatment for ischemic heart disease, particularly for patients who are not candidates for current methods of revascularization. The goal of treatment is both relief of symptoms of coronary artery disease and improvement of cardiac function by increasing perfusion to the ischemic region. Protein-based therapy with cytokines including vascular endothelial growth factor and fibroblast growth factor demonstrated functionally significant angiogenesis in several animal models. However, clinical trials have yielded largely disappointing results. The attenuated angiogenic response seen in clinical trials of patients with coronary artery disease may be due to multiple factors including endothelial dysfunction, particularly in the context of advanced atherosclerotic disease and associated comorbid conditions, regimens of single agents, as well as inefficiencies of current delivery methods. Gene therapy has several advantages over protein therapy and recent advances in gene transfer techniques have improved the feasibility of this approach. The safety and tolerability of therapeutic angiogenesis by gene transfer has been demonstrated in phase I clinical trials. The utility of therapeutic angiogenesis by gene transfer as a treatment option for ischemic cardiovascular disease will be determined by adequately powered, randomized, placebo-controlled Phase II and III clinical trials. Cell-based therapies offer yet another approach to therapeutic angiogenesis. Although it is a promising therapeutic strategy, additional preclinical studies are warranted to determine the optimal cell type to be administered, as well as the optimal delivery method. It is likely the optimal treatment will involve multiple agents as angiogenesis is a complex process involving a large cascade of cytokines, as well as cells and extracellular matrix, and administration of a single factor may be insufficient. The promise of therapeutic angiogenesis as a novel treatment for no-option patients should be approached with cautious optimism as the field progresses.


Circulation | 2005

Effects of l-Arginine on Fibroblast Growth Factor 2–Induced Angiogenesis in a Model of Endothelial Dysfunction

Pierre Voisine; Jian Li; Cesario Bianchi; Tanveer A. Khan; Marc Ruel; Shu-Hua Xu; Jun Feng; Audrey Rosinberg; Tamer Malik; Yasunari Nakai; Frank W. Sellke

Background—Nitric oxide availability, which is decreased in advanced coronary artery disease associated with endothelial dysfunction, is an important mediator of fibroblast growth factor-2 (FGF-2)–induced angiogenesis. This could explain the disappointing results of FGF-2 therapy in clinical trials despite promising preclinical studies. We examined the influence of l-arginine supplementation to FGF-2 therapy on myocardial microvascular reactivity and perfusion in a porcine model of endothelial dysfunction. Methods and Results—Eighteen pigs were fed either a normal (NORM, n=6) or high cholesterol diet, with (HICHOL-ARG, n=6) or without (HICHOL, n=6) l-arginine. All pigs underwent ameroid placement on the circumflex artery and 3 weeks later received surgical FGF-2 treatment. Four weeks after treatment, endothelial-dependent coronary microvascular responses and lateral myocardial perfusion were assessed. Endothelial cell density was determined by immunohistochemistry. FGF-2, fibroblast growth receptor-1, endothelial-derived nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and syndecan-4 levels were determined by immunoblotting. Pigs from the HICHOL group showed endothelial dysfunction in the circumflex territory, which was normalized by l-arginine supplementation. FGF-2 treatment was ineffective in the HICHOL group (circumflex/left anterior descending blood flow ratios: 1.01 (rest) and 1.01 (pace), after and before treatment). Addition of l-arginine improved myocardial perfusion in response to FGF-2 at rest (ratio 1.13, P=0.02 versus HICHOL) but not during pacing (ratio 0.94, P=NS), and was associated with increased protein levels of iNOS and eNOS. Conclusion—l-arginine supplementation can partially restore the normal response to endothelium-dependent vasorelaxants and myocardial perfusion in response to FGF-2 treatment in a swine model of hypercholesterolemia-induced endothelial dysfunction. These findings suggest a role for l-arginine in combination with FGF-2 therapy for end-stage coronary artery disease.


Circulation | 2005

Aprotinin Preserves Cellular Junctions and Reduces Myocardial Edema After Regional Ischemia and Cardioplegic Arrest

Tanveer A. Khan; Cesario Bianchi; Eugenio G. Araujo; Pierre Voisine; Shu-Hua Xu; Jun Feng; Jian Li; Frank W. Sellke

Background—Cardiac surgery with cardiopulmonary bypass (CPB) and cardioplegic arrest has been associated with myocardial edema attributable to vascular permeability, which is regulated in part by thrombin-induced alterations in cellular junctions. Aprotinin has been demonstrated to prevent activation of the thrombin protease-activated receptor, and we hypothesized that aprotinin preserves myocardial cellular junctions and prevents myocardial edema in a porcine model of regional ischemia and cardioplegic arrest. Methods and Results—Fourteen pigs were subjected to 30 minutes of regional ischemia, followed by 60 minutes of CPB, with 45 minutes of crystalloid cardioplegia, then 90 minutes of post-CPB reperfusion. The treatment group (n=7) was administered aprotinin (40 000 kallikrein inhibitor units [KIU]/kg loading dose, 40 000 KIU/kg pump prime, and 10 000 KIU/kg per hour continuous infusion). Control animals (n=7) received normal saline. Myocardial vascular endothelial (VE)-cadherin, &bgr;-catenin and &ggr;-catenin, and associated mitogen-activated protein kinase (MAPK) pathways were assessed by immunoblot and immunoprecipitation. Histologic analysis of the cellular junctions was done by immunofluorescence. Myocardial tissue water content was measured. VE-cadherin, &bgr;-catenin, and &ggr;-catenin levels were significantly greater in the aprotinin group (all P<0.05). Immunfluorescence confirmed that aprotinin prevented loss of coronary endothelial adherens junction continuity. Aprotinin reduced tyrosine phosphorylation in myocardial tissue sections. Phospho-p38 activity was ≈30% lower in the aprotinin group (P=0.007). The aprotinin group demonstrated decreased myocardial tissue water content (81.2±0.5% versus 83.5±0.3%; P=0.01) and reduced intravenous fluid requirements (2.9±0.2 L versus 4.0±0.4 L; P=0.03). Conclusions—Aprotinin preserves adherens junctions after regional ischemia and cardioplegic arrest through a mechanism potentially involving the p38 MAPK pathway, resulting in preservation of the VE barrier and reduced myocardial tissue edema.

Collaboration


Dive into the Tanveer A. Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Ruel

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger J. Laham

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Audrey Rosinberg

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eugenio G. Araujo

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shu-Hua Xu

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marc Ruel

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge