Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanveer Khan is active.

Publication


Featured researches published by Tanveer Khan.


Critical Reviews in Plant Sciences | 2003

Low-Temperature Stress: Implications for Chickpea (Cicer arietinum L.) Improvement

Janine Croser; Heather Clarke; Kadambot H. M. Siddique; Tanveer Khan

Chickpea is the third major cool season grain legume crop in the world after dry bean and field pea. Chilling and freezing range temperatures in many of its production regions adversely affect chickpea production. This review provides a comprehensive account of the current information regarding the tolerance of chickpea to freezing and chilling range temperatures. The effect of freezing and chilling at the major phenological stages of chickpea growth are discussed, and its ability for acclimation and winter hardiness is reviewed. Response mechanisms to chilling and freezing are considered at the molecular, cellular, whole plant, and canopy levels. The genetics of tolerance to freezing in chickpea are outlined. Sources of resistance to both freezing and chilling from within the cultivated and wild Cicer genepools are compared and novel breeding technologies for the improvement of tolerance in chickpea are suggested. We also suggest future research be directed toward understanding the mechanisms involved in cold tolerance of chickpea at the physiological, biochemical, and molecular level. Further screening of both the cultivated and wild Cicer species is required in order to identify superior sources of tolerance, especially to chilling at the reproductive stages.


Crop & Pasture Science | 2004

Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement

Jens Berger; Neil C. Turner; Kadambot H. M. Siddique; E.J. Knights; R.B. Brinsmead; I. Mock; C. Edmondson; Tanveer Khan

Chickpea (Cicer arietinum L.) genotypes comprising released cultivars, advanced breeding lines, and landraces of Australian, Mediterranean basin, Indian, and Ethiopian origin were evaluated at 5 representative sites (Merredin, WA; Minnipa, SA; Walpeup, Vic.; Tamworth, NSW; Warwick, Qld) over 2 years. Data on plant stand, early vigour, phenology, productivity, and yield components were collected at each site. Site yields ranged from 0.3 t/ha at Minnipa in 1999 to 3.5 t/ha at Warwick in 1999. Genotype by environment (G × E) interaction was highly significant. Principal components analysis revealed contrasting genotype interaction behaviour at dry, low-yielding sites (Minnipa 1999, Merredin 2000) and higher rainfall, longer growing-season environments (Tamworth 2000). Genotype clusters performing well under stress tended to yield well at all sites except Tamworth in 2000, and were characterised by early phenology and high harvest index, but were not different in terms of biomass or early vigour. Some of these traits were strongly influenced by germplasm origin. The material with earliest phenology came from Ethiopia, and southern and central India, with progressively later material from northern India and Australia, and finally the Mediterranean. There was a delay between the onset of flowering and podding at all sites, which was related to average temperatures immediately post-anthesis (r = –0.81), and therefore larger in early flowering material (>30 days at some sites). Harvest index was highest in Indian and Ethiopian germplasm, whereas crop height was greatest in Australian and Mediterranean accessions. Some consistently high yielding genotypes new to the Australian breeding program were identified (ICCV 10, BG 362), and the existing cultivar Lasseter was also confirmed to be very productive.


Euphytica | 2004

Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars

Heather Clarke; Tanveer Khan; Kadambot H. M. Siddique

The potential of pollen selection as part of the breeding efforts to increase chilling tolerance in chickpea was investigated. This alternative approach to apply selection pressure at the gametophytic stage in the life cycle has been proposed widely, but there are no reports of the technique being implemented in a crop improvement program. In this paper, we describe how we developed a practical pollen selection technique useful for chickpea improvement.Pollen selection improved chilling tolerance in crossbreds compared with the parental chickpea genotypes and compared with progeny derived without pollen selection. This is backed up by controlled environment assessments in growth rooms and by field studies. We also clearly demonstrate that chilling tolerant pollen ‘wins the race’ to fertilise the ovule at low temperature, using flower color as a morphological marker. Overall, pollen selection results in a lower threshold temperature for podding, which leads to pod setting two to four weeks earlier in the short season Mediterranean-type environments of Western Australia. Field testing at multiple sites across Australia, as part of the national crop variety testing program, shows that these breeding lines have a significant advantage in cool dryland environments.The major factors which affected the success of pollen selection are discussed in the paper, from generation of variability in the pollen to a means to recover hybrids and integration of our basic research with an applied breeding program. We conclude that chilling tolerance observed in the field over successive generations are the result of pollen selection during early generations.


Crop & Pasture Science | 2008

Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum x P. fulvum interspecific cross

Oonagh Byrne; Darryl Hardie; Tanveer Khan; J. Speijers; Guijun Yan

Interspecific populations derived from crossing cultivated field pea, Pisum sativum, with the wild pea relative, Pisum fulvum, were scored for pod and seed injury caused by the pea weevil, Bruchus pisorum. Pod resistance was quantitatively inherited in the F2 population, with evidence of transgressive segregation. Heritability of pod resistance between F2 and F3 generations was very low, suggesting that this trait would be difficult to transfer in a breeding program. Seed resistance was determined for the F2 population by testing F3 seed tissues of individual F2 plants and pooling data from seed reaction for each F2 plant (inferred F2 genotype). Segregation for seed resistance in the F2 population of the cross Pennant/ATC113 showed a trigenic mode of inheritance, with additive effects and dominant epistasis towards susceptibility. Seed resistance was conserved over consecutive generations (F2 to F5) and successfully transferred to a new population by backcross introgression. Seed resistance in the backcross introgressed population segregated in a 63 : 1 ratio, supporting the three-gene inheritance model. It is proposed that complete resistance to pea weevil is controlled by three major recessive alleles assigned pwr1, pwr2, and pwr3, and complete susceptibility by three major dominant alleles assigned PWR1, PWR2, and PWR3. It is recommended that large populations (>300 F2 plants) would be required to effectively transfer these recessive alleles to current field pea cultivars through hybridisation and repeated backcrossing.


Journal of Experimental Botany | 2016

Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set

Jiayin Pang; Neil C. Turner; Tanveer Khan; Yan Lei Du; Xiong Jl; Timothy D. Colmer; Rosangela Devilla; Katia Stefanova; Kadambot H. M. Siddique

Highlight Exposed to terminal drought, the soil water content at which chickpea seed set ceased coincided with that at which stomatal conductance began to decrease and pod abscisic acid concentration increased.


Crop & Pasture Science | 2012

Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum

Nader Aryamanesh; Oonagh Byrne; Darryl Hardie; Tanveer Khan; Kadambot H. M. Siddique; Guijun Yan

Abstract. The pea weevil, Bruchus pisorum, is one of the most intractable pest problems of cultivated field pea (Pisum sativum) in the world. Pesticide application, either as a contact insecticide spray to the field pea crop or fumigation of the harvested seed, is the only available method for its control. The aim of the study was to develop a quick and reliable method to screen for pea weevil resistance and increase efficiency in breeding for this important trait. Backcrossed progenies derived from an interspecific cross between cultivated field pea and its wild relative (Pisum fulvum, source of resistance for pea weevil) were subjected to natural infestation in field plots. Mature seeds were hand-harvested, stored to allow development of adult beetles, and then separated into infested and non-infested using a density separation method in 30% caesium chloride (CsCl). Susceptibility and resistance of the progenies were calculated based on this method and further confirmed by a glasshouse bioassay. Resistance in backcross populations improved considerably through selection of resistant lines using the density separation method. We found that the method using CsCl separation is a useful tool in breeding for pea weevil resistance. We were able to introgress pea weevil resistance from P. fulvum into cultivated field pea through backcrossing to produce several advanced pea weevil resistant lines following this procedure.


Crop & Pasture Science | 2013

Cool-season grain legume improvement in Australia—use of genetic resources

Kadambot H. M. Siddique; William Erskine; K. Hobson; E.J. Knights; A. Leonforte; Tanveer Khan; J. G. Paull; Robert Redden; Michael Materne

Abstract. The cool-season grain legume industry in Australia, comprising field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), lentil (Lens culinaris ssp. culinaris Medik.), and narrow-leaf lupin (Lupinus angustifolius L.), has emerged in the last 40 years to occupy a significant place in cropping systems. The development of all major grain legume crops—including field pea, which has been grown for over 100 years—has been possible through large amounts of genetic resources acquired and utilised in breeding. Initially, several varieties were released directly from these imports, but the past 25 years of grain legume breeding has recombined traits for adaptation and yield for various growing regions. Many fungal disease threats have been addressed through resistant germplasm, with varying successes. Some threats, e.g. black spot in field pea caused by Mycosphaerella pinodes (Berk. and Blox.) Vestergr., require continued exploration of germplasm and new technology. The arrival of ascochyta blight in chickpea in Australia threatened to destroy the chickpea industry of southern Australia, but thanks to resistant germplasm, it is now on its way to recovery. Many abiotic stresses including drought, heat, salinity, and soil nutritional toxicities continue to challenge the expansion of the grain legume area, but recent research shows that genetic variation in the germplasm may offer new solutions. Just as the availability of genetic resources has been key to successfully addressing many challenges in the past two decades, so it will assist in the future, including adapting to climate change. The acquisition of grain legume germplasm from overseas is a direct result of several Australians who fostered collaborations leading to new collection missions enriching the germplasm base for posterity.


Plant Disease | 2012

First Report of Black Spot Caused by Boeremia exigua var. exigua on Field Pea in Australia

Yu Pin Li; Ming Pei You; Patrick M. Finnegan; Tanveer Khan; Vincent Lanoiselet; N. Eyres; Martin J. Barbetti

Black spot is a major disease of field pea (Pisum sativum L.) production across southern Australia. Known causal agents in Australia include one or more of Mycosphaerella pinodes (Berk. & Bloxam) Vestergr., Phoma medicaginis var. pinodella (L.K. Jones), Ascochyta pisi Lib., or P. koolunga (Davidson, Hartley, Priest, Krysinska-Kaczmarek, Herdina, McKay & Scott) (2), but other pathogens may also be associated with black spot symptoms. Black spot generally occurs on most plants and in most pea fields in Western Australia (W.A.), and during earlier winter/spring surveys of blackspot pathogens, some isolates were tentatively allocated to P. medicaginis var. pinodella despite different cultural characteristics on potato dextrose agar (PDA). Recently, single-spore isolations of a single culture each from an infested pea crop at Medina, Moora, and Mt. Barker in W.A. were made onto PDA. A PCR-based assay with TW81 and AB28 primers was used to amplify from the ITS-5.8S rDNA region. Purified DNA products were sequenced for the three isolates and then BLASTn was used to compare sequences with those in GenBank. Our sequences (GenBank Accession Nos. JN37743, JN377439, and JN377438) had 100% nucleotide identity with P. exigua Desm. var. exigua accessions (GI13385450, GI169894028, and GI189163921), an earlier synonym of what is now known as Boeremia exigua var. exigua ([Desm.] Aveskamp, Gruyter & Verkley) (1). Davidson et al. (2) used the same primers to identify P. koolunga, but none of our isolates were P. koolunga. A suspension of 107 conidia ml-1 of each representative isolate was inoculated onto foliage of 15-day-old field pea cv. Dundale plants and maintained at >90% relative humidity for 72 h postinoculation. Control plants inoculated with just water remained symptomless. Brown lesions were evident by 8 to 10 days postinoculation and mostly 1 to 3 mm in diameter. B. exigua var. exigua was readily reisolated from infected leaves. Isolates have been lodged in the W.A. Culture Collection Herbarium maintained at the Department of Agriculture and Food W.A. (Accession Nos. WAC13500, WAC13502, and WAC13501 from Medina, Moora, and Mt. Barker, respectively). Outside Australia, its synonym P. exigua var. exigua is a known pathogen of field pea (4), other legumes including common bean (Phaseolus vulgaris L.) (4) and soybean (Glycine max [L.] Merr.) (3), and is known to produce phytotoxic cytochalasins. In eastern Australia, P. exigua var. exigua has been reported on common bean (1930s and 1950s), phasey bean (Macroptilium lathyroides [L.] Urb.) and siratro (M. atropurpureum (DC.) Urb.) (1950s and 1960s), mung bean (Vigna radiata [L.] Wilczek.) (1960s), ramie (Boehmeria nivea [L.] Gaudich.) (1939), potato (Solanum tuberosum L.) (1980s), and pyrethrum (Tanacetum cinerariifolium [Trevir.] Schultz Bip.) (2004 and 2007) (Australian Plant Pest Database). To our knowledge, this the first report of B. exigua var. exigua on field pea in Australia, and because of its potential to be a significant pathogen on field pea, warrants further evaluation. References: (1) M. M. Aveskamp et al. Stud. Mycol. 65:1, 2010. (2) J. A. Davidson et al. Mycologia 101:120, 2009. (3) L. Irinyi et al. Mycol. Res. 113:249, 2009. (4) J. Marcinkowska. Biul. Inst. Hod. Aklim. Rosl. 190:169, 1994.


Plant Disease | 2014

Temporal and Spatial Changes in the Pea Black Spot Disease Complex in Western Australia

Hieu Sy Tran; Yu Pin Li; Ming Pei You; Tanveer Khan; Ian Pritchard; Martin J. Barbetti

Black spot (also referred to as Ascochyta blight, Ascochyta foot rot and black stem, and Ascochyta leaf and pod spot) is a devastating disease of pea (Pisum sativum) caused by one or more pathogenic fungi, including Didymella pinodes, Ascochyta pisi, and Phoma pinodella. Surveys were conducted across pea-growing regions of Western Australia in 1984, 1987, 1989, 1996, 2010, and 2012. In total, 1,872 fungal isolates were collected in association with pea black spot disease symptoms. Internal transcribed spacer regions from representative isolates, chosen based on morphology, were sequenced to aid in identification. In most years and locations, D. pinodes was the predominant pathogen in the black spot complex. From 1984 to 2012, four new pathogens associated with black spot symptoms on leaves or stems (P. koolunga, P. herbarum, Boeremia exigua var. exigua, and P. glomerata) were confirmed. This study is the first to confirm P. koolunga in association with pea black spot symptoms in field pea in Western Australia and show that, by 2012, it was widely present in new regions. In 2012, P. koolunga was more prevalent than D. pinodes in Northam and P. pinodella in Esperance. P. herbarum and B. exigua var. exigua were only recorded in 2010. Although A. pisi was reported in Western Australia in 1912 and again in 1968 and is commonly associated with pea black spot in other states of Australia and elsewhere, it was not recorded in Western Australia from 1984 to 2012. It is clear that the pathogen population associated with the pea black spot complex in Western Australia has been dynamic across time and geographic location. This poses a particular challenge to development of effective resistance against the black spot complex, because breeding programs are focused almost exclusively on resistance to D. pinodes, largely ignoring other major pathogens in the disease complex. Furthermore, development and deployment of effective host resistance or fungicides against just one or two of the pathogens in the disease complex could radically shift the make-up of the population toward pathogen species that are least challenged by the host resistance or fungicides, creating an evolving black spot complex that remains ahead of breeding and other management efforts.


Plant Science | 2011

Albinism does not correlate with biparental inheritance of plastid DNA in interspecific hybrids in Cicer species

Maya Kumari; Heather Clarke; Catherine Colas des Francs-Small; Ian Small; Tanveer Khan; Kadambot H. M. Siddique

Cultivated chickpea (Cicer arietinum) was crossed with its wild relatives from the genus Cicer to transfer favorable genes from the wider gene pool into the cultivar. Post-hybridization barriers led to yellowing and subsequent senescence from as early as 5 days after fertilization, however, the ovules of hybrid embryos could be rescued in vitro. Hybrids were classified as green, partially green or albino. The hybrid status of regenerated plantlets in vitro was confirmed by amplification of nuclear DNA markers. To check whether chloroplast development correlated with plastid DNA inheritance in these crosses, primers were designed using conserved plastid gene sequences from wild and cultivated species. All three possible plastid inheritance patterns were observed: paternal, maternal and biparental. This is the first report of biparental inheritance of plastid DNA in Cicer. No correlation was observed between parental origin of the plastid genome and degree of albinism, indicating that chloroplast development in hybrid genotypes was mostly influenced by nuclear factors.

Collaboration


Dive into the Tanveer Khan's collaboration.

Top Co-Authors

Avatar

Kadambot H. M. Siddique

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Martin J. Barbetti

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ming Pei You

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Heather Clarke

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Hieu Sy Tran

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Guijun Yan

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

William Erskine

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Darryl Hardie

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Janet Wroth

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Wallace Cowling

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge