Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanveer S. Batth is active.

Publication


Featured researches published by Tanveer S. Batth.


Nature Biotechnology | 2013

engineering dynamic pathway regulation using stress-response promoters

Robert H. Dahl; Fuzhong Zhang; Jorge Alonso-Gutierrez; Edward E. K. Baidoo; Tanveer S. Batth; Alyssa M. Redding-Johanson; Christopher J. Petzold; Aindrila Mukhopadhyay; Taek Soon Lee; Paul D. Adams; Jay D. Keasling

Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.


Metabolic Engineering | 2013

Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production

Jorge Alonso-Gutierrez; Rossana Chan; Tanveer S. Batth; Paul D. Adams; Jay D. Keasling; Christopher J. Petzold; Taek Soon Lee

Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative.


Applied and Environmental Microbiology | 2012

Modular engineering of L-tyrosine production in Escherichia coli.

Darmawi Juminaga; Edward E. K. Baidoo; Alyssa M. Redding-Johanson; Tanveer S. Batth; Helcio Burd; Aindrila Mukhopadhyay; Christopher J. Petzold; Jay D. Keasling

ABSTRACT Efficient biosynthesis of l-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for l-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to l-tyrosine on two plasmids. Rational engineering to improve l-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to l-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter l-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2010

4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement

Yao Cong; Matthew L. Baker; Joanita Jakana; David Woolford; Erik J. Miller; Stefanie Reissmann; Ramya Kumar; Alyssa M. Redding-Johanson; Tanveer S. Batth; Aindrila Mukhopadhyay; Steven J. Ludtke; Judith Frydman; Wah Chiu

The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ∼5–10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC’s unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ∼95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC’s cellular substrate specificity.


Metabolic Engineering | 2011

Targeted proteomics for metabolic pathway optimization: Application to terpene production

Alyssa M. Redding-Johanson; Tanveer S. Batth; Rossana Chan; Rachel A. Krupa; Heather L. Szmidt; Paul D. Adams; Jay D. Keasling; Taek Soon Lee; Aindrila Mukhopadhyay; Christopher J. Petzold

Successful metabolic engineering relies on methodologies that aid assembly and optimization of novel pathways in microbes. Many different factors may contribute to pathway performance, and problems due to mRNA abundance, protein abundance, or enzymatic activity may not be evident by monitoring product titers. To this end, synthetic biologists and metabolic engineers utilize a variety of analytical methods to identify the parts of the pathway that limit production. In this study, targeted proteomics, via selected-reaction monitoring (SRM) mass spectrometry, was used to measure protein levels in Escherichia coli strains engineered to produce the sesquiterpene, amorpha-4,11-diene. From this analysis, two mevalonate pathway proteins, mevalonate kinase (MK) and phosphomevalonate kinase (PMK) from Saccharomyces cerevisiae, were identified as potential bottlenecks. Codon-optimization of the genes encoding MK and PMK and expression from a stronger promoter led to significantly improved MK and PMK protein levels and over three-fold improved final amorpha-4,11-diene titer (>500 mg/L).


Metabolic Engineering | 2012

Enhancing fatty acid production by the expression of the regulatory transcription factor FadR

Fuzhong Zhang; Mario Ouellet; Tanveer S. Batth; Paul D. Adams; Christopher J. Petzold; Aindrila Mukhopadhyay; Jay D. Keasling

Fatty acids are important precursors to biofuels. The Escherichia coli FadR is a transcription factor that regulates several processes in fatty acid biosynthesis, degradation, and membrane transport. By tuning the expression of FadR in an engineered E. coli host, we were able to increase fatty acid titer by 7.5-fold over our previously engineered fatty acid-producing strain, reaching 5.2±0.5g/L and 73% of the theoretical yield. The mechanism by which FadR enhanced fatty acid yield was studied by whole-genome transcriptional analysis (microarray) and targeted proteomics. Overexpression of FadR led to transcriptional changes for many genes, including genes involved in fatty acid pathways. The biggest transcriptional changes in fatty acid pathway genes included fabB, fabF, and accA. Overexpression of any of these genes alone did not result in a high yield comparable to fadR expression, indicating that FadR enhanced fatty acid production globally by tuning the expression levels of many genes to optimal levels.


Plant Physiology | 2012

Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis

Harriet T. Parsons; Katy M. Christiansen; Bernhard Knierim; Andrew J. Carroll; Jun Ito; Tanveer S. Batth; Andreia M. Smith-Moritz; Stephanie Morrison; Peter McInerney; Masood Z. Hadi; Manfred Auer; Aindrila Mukhopadhyay; Christopher J. Petzold; Henrik Vibe Scheller; Dominique Loqué; Joshua L. Heazlewood

The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.


Metabolic Engineering | 2011

Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases

Suzanne M. Ma; David E. Garcia; Alyssa M. Redding-Johanson; Gregory D. Friedland; Rossana Chan; Tanveer S. Batth; John Haliburton; Dylan Chivian; Jay D. Keasling; Christopher J. Petzold; Taek Soon Lee; Swapnil R. Chhabra

Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds.


Journal of Proteome Research | 2011

Analysis of the Arabidopsis Cytosolic Proteome Highlights Subcellular Partitioning of Central Plant Metabolism

Jun Ito; Tanveer S. Batth; Christopher J. Petzold; Alyssa M. Redding-Johanson; Aindrila Mukhopadhyay; Robert E. Verboom; Etienne H. Meyer; A. Harvey Millar; Joshua L. Heazlewood

The plant cell cytosol is a dynamic and complex intracellular matrix that, by definition, contains no compartmentalization. Nonetheless, it maintains a wide variety of biochemical networks and often links metabolic pathways across multiple organelles. There have been numerous detailed proteomic studies of organelles in the model plant Arabidopsis thaliana, although no such analysis has been undertaken on the cytosol. The cytosolic protein fraction from cell suspensions of Arabidopsis thaliana was isolated and analyzed using offline strong cation exchange liquid chromatography and LC-MS/MS. This generated a robust set of 1071 cytosolic proteins. Functional annotation of this set revealed major activities in protein synthesis and degradation, RNA metabolism and basic sugar metabolism. This included an array of important cytosol-related functions, specifically the ribosome, the set of tRNA catabolic enzymes, the ubiquitin-proteasome pathway, glycolysis and associated sugar metabolism pathways, phenylpropanoid biosynthesis, vitamin metabolism, nucleotide metabolism, an array of signaling and stress-responsive molecules, and NDP-sugar biosynthesis. This set of cytosolic proteins provides for the first time an extensive analysis of enzymes responsible for the myriad of reactions in the Arabidopsis cytosol and defines an experimental set of plant protein sequences that are not targeted to subcellular locations following translation and folding in the cytosol.


Journal of Proteome Research | 2014

Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer.

Christian D. Kelstrup; Rosa Rakownikow Jersie-Christensen; Tanveer S. Batth; Tabiwang N. Arrey; Andreas Kuehn; Markus Kellmann; J. Olsen

Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate the faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evaluated by four different acquisition methods and benchmarked across three generations of Q Exactive instruments (ProteomeXchange data set PXD001305). We find the ultra-high-field Orbitrap mass analyzer to be capable of attaining a sequencing speed above 20 Hz, and it routinely exceeds 10 peptide spectrum matches per second or up to 600 new peptides sequenced per gradient minute. We identify 4400 proteins from 1 μg of HeLa digest using a 1 h gradient, which is an approximately 30% improvement compared to that with previous instrumentation. In addition, we show that very deep proteome coverage can be achieved in less than 24 h of analysis time by offline high-pH reversed-phase peptide fractionation, from which we identify more than 140,000 unique peptide sequences. This is comparable to state-of-the-art multiday, multienzyme efforts. Finally, the acquisition methods are evaluated for single-shot phosphoproteomics, where we identify 7600 unique HeLa phosphopeptides in one gradient hour and find the quality of fragmentation spectra to be more important than quantity for accurate site assignment.

Collaboration


Dive into the Tanveer S. Batth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Adams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Olsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Aindrila Mukhopadhyay

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Taek Soon Lee

Joint BioEnergy Institute

View shared research outputs
Top Co-Authors

Avatar

Alyssa M. Redding-Johanson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blake A. Simmons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward E. K. Baidoo

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge