Tanvir Alam
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanvir Alam.
Nature | 2017
Chung Chau Hon; Jordan A. Ramilowski; Jayson Harshbarger; Nicolas Bertin; Owen J. L. Rackham; Julian Gough; Elena Denisenko; Sebastian Schmeier; Thomas M. Poulsen; Jessica Severin; Marina Lizio; Hideya Kawaji; Takeya Kasukawa; Masayoshi Itoh; A. Maxwell Burroughs; Shohei Noma; Sarah Djebali; Tanvir Alam; Yulia A. Medvedeva; Alison C. Testa; Leonard Lipovich; Chi Wai Yip; Imad Abugessaisa; Mickal Mendez; Akira Hasegawa; Dave Tang; Timo Lassmann; Peter Heutink; Magda Babina; Christine A. Wells
Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.
PLOS ONE | 2014
Tanvir Alam; Yulia A. Medvedeva; Hui Jia; James B. Brown; Leonard Lipovich; Vladimir B. Bajic
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.
Nature Biotechnology | 2017
Derek De Rie; Imad Abugessaisa; Tanvir Alam; Erik Arner; Peter Arner; Haitham Ashoor; Gaby Åström; Magda Babina; Nicolas Bertin; A. Maxwell Burroughs; Ailsa Carlisle; Carsten O. Daub; Michael Detmar; Ruslan Deviatiiarov; Alexandre Fort; Claudia Gebhard; Dan Goldowitz; Sven Guhl; Thomas Ha; Jayson Harshbarger; Akira Hasegawa; Kosuke Hashimoto; Meenhard Herlyn; Peter Heutink; Kelly J Hitchens; Chung Chau Hon; Edward Huang; Yuri Ishizu; Chieko Kai; Takeya Kasukawa
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
Nucleic Acids Research | 2015
Sugata Roy; Sebastian Schmeier; Erik Arner; Tanvir Alam; Suraj P. Parihar; Mumin Ozturk; Ousman Tamgue; Hideya Kawaji; Michiel J. L. de Hoon; Masayoshi Itoh; Timo Lassmann; Piero Carninci; Yoshihide Hayashizaki; Alistair R. R. Forrest; Vladimir B. Bajic; Reto Guler; Frank Brombacher; Harukazu Suzuki
Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.
Scientific Reports | 2015
Abdullah M. Khamis; Adam R. Hamilton; Yulia A. Medvedeva; Tanvir Alam; Intikhab Alam; Magbubah Essack; Boris Umylny; Boris R. Jankovic; Nicholas L. Naeger; Makoto Suzuki; Matthias Harbers; Gene E. Robinson; Vladimir B. Bajic
Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.
Biochemical Journal | 2014
Tanvir Alam; Meshari Alazmi; Xin Gao; Stefan T. Arold
LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.
Nucleic Acids Research | 2016
Tanvir Alam; Mahmut Uludag; Magbubah Essack; Adil Salhi; Haitham Ashoor; John Hanks; Craig Kapfer; Katsuhiko Mineta; Takashi Gojobori; Vladimir B. Bajic
Abstract Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna
Nucleic Acids Research | 2017
Sebastian Schmeier; Tanvir Alam; Magbubah Essack; Vladimir B. Bajic
Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.
RNA Biology | 2017
Adil Salhi; Magbubah Essack; Tanvir Alam; Vladan Bajic; Lina Ma; Aleksandar Radovanovic; Benoit Marchand; Sebastian Schmeier; Zhang Zhang; Vladimir B. Bajic
ABSTRACT Noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long ncRNAs (lncRNAs), are important players in diseases and emerge as novel drug targets. Thus, unraveling the relationships between ncRNAs and other biomedical entities in cells are critical for better understanding ncRNA roles that may eventually help develop their use in medicine. To support ncRNA research and facilitate retrieval of relevant information regarding miRNAs and lncRNAs from the plethora of published ncRNA-related research, we developed DES-ncRNA (www.cbrc.kaust.edu.sa/des_ncrna). DES-ncRNA is a knowledgebase containing text- and data-mined information from public scientific literature and other public resources. Exploration of mined information is enabled through terms and pairs of terms from 19 topic-specific dictionaries including, for example, antibiotics, toxins, drugs, enzymes, mutations, pathways, human genes and proteins, drug indications and side effects, mutations, diseases, etc. DES-ncRNA contains approximately 878,000 associations of terms from these dictionaries of which 36,222 (5,373) are with regards to miRNAs (lncRNAs). We provide several ways to explore information regarding ncRNAs to users including controlled generation of association networks as well as hypotheses generation. We show an example how DES-ncRNA can aid research on Alzheimer disease and suggest potential therapeutic role for Fasudil. DES-ncRNA is a powerful tool that can be used on its own or as a complement to the existing resources, to support research in human ncRNA. To our knowledge, this is the only knowledgebase dedicated to human miRNAs and lncRNAs derived primarily through literature-mining enabling exploration of a broad spectrum of associated biomedical entities, not paralleled by any other resource.
bioRxiv | 2018
Tanvir Alam; Meshari Alazmi; Rayan Naser; Franceline Huser; Afaque Ahmad Imtiyaz Momin; Katarzyna Wiktoria Walkiewicz; Christian Canlas; Raphaël Huser; Amal J. Ali; Jasmeen S. Merzaban; Vladimir B. Bajic; Xin Gao; Stefan T. Arold
Short Linear Motifs (SLiMs) contribute to almost every cellular function by connecting appropriate protein partners. Accurate prediction of SLiMs is difficult due to their shortness and sequence degeneracy. Leucine-aspartic acid (LD) motifs are SLiMs that link paxillin family proteins to factors controlling (cancer) cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. To enable a proteome-wide assessment of these motifs, we developed an active-learning based framework that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome identified a dozen proteins that contain LD motifs, all being involved in cell adhesion and migration, and revealed a new type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear export sequences. Inter-species comparison revealed a conserved LD signalling core, and reveals the emergence of species-specific adaptive connections, while maintaining a strong functional focus of the LD motif interactome. Collectively, our data elucidate the mechanisms underlying the origin and adaptation of an ancestral SLiM.
Collaboration
Dive into the Tanvir Alam's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs