Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanxi Cai is active.

Publication


Featured researches published by Tanxi Cai.


Proteomics | 2009

Proteomic analysis of mitochondria from Caenorhabditis elegans

Jing Li; Tanxi Cai; Peng Wu; Ziyou Cui; Xiulan Chen; Junjie Hou; Zhensheng Xie; Peng Xue; Linan Shi; Pingsheng Liu; John R. Yates; Fuquan Yang

Mitochondria play essential roles in cell physiological processes including energy production, metabolism, ion homeostasis, cell growth, aging and apoptosis. Proteomic strategies have been applied to the study of mitochondria since 1998; these studies have yielded decisive information about the diverse physiological functions of the organelle. As an ideal model biological system, the nematode Caenorhabditis elegans has been widely used in the study of several diseases, such as metabolic diseases and cancer. However, the mitochondrial proteome of C. elegans remains elusive. In this study, we purified mitochondria from C. elegans and performed a comprehensive proteomic analysis using the shotgun proteomic approach. A total of 1117 proteins have been identified with at least two unique peptides. Their physicochemical and functional characteristics, subcellular locations, related biological processes, and associations with human diseases, especially Parkinsons disease, are discussed. An orthology comparison was also performed between C. elegans and four other model organisms for a general depiction of the conservation of mitochondrial proteins during evolution. This study will provide new clues for understanding the role of mitochondria in the physiological and pathological processes of C. elegans.


Molecular & Cellular Proteomics | 2013

Integrative Proteomic and Transcriptomic Analyses Reveal Multiple Post-transcriptional Regulatory Mechanisms of Mouse Spermatogenesis

Haiyun Gan; Tanxi Cai; Xiwen Lin; Yujian Wu; Xiuxia Wang; Fuquan Yang; Chunsheng Han

Mammalian spermatogenesis consists of many cell types and biological processes and serves as an excellent model for studying gene regulation at transcriptional and post-transcriptional levels. Many key proteins, miRNAs, and perhaps piRNAs have been shown to be involved in post-transcriptional regulation of spermatogenesis. However, a systematic method for assessing the relationship between protein and mRNA expression has not been available for studying mechanisms of post-transcriptional regulation. In the present study, we used the iTRAQ-based quantitative proteomic approach to identify 2008 proteins in mouse type A spermatogonia, pachytene spermatocytes, round spermatids, and elongative spermatids with high confidence. Of these proteins, 1194 made up four dynamically changing clusters, which reflect the mitotic amplification, meiosis, and post-meiotic development of germ cells. We identified five major regulatory mechanisms termed “transcript only,” “transcript degradation,” “translation repression,” “translation de-repression,” and “protein degradation” based on changes in protein level relative to changes in mRNA level at the mitosis/meiosis transition and the meiosis/post-meiotic development transition. We found that post-transcriptional regulatory mechanisms are related to the generation of piRNAs and antisense transcripts. Our results provide a valuable inventory of proteins produced during mouse spermatogenesis and contribute to elucidating the mechanisms of the post-transcriptional regulation of gene expression in mammalian spermatogenesis.


Journal of Proteome Research | 2010

Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment.

Junjie Hou; Ziyou Cui; Zhensheng Xie; Peng Xue; Peng Wu; Xiulan Chen; Jing Li; Tanxi Cai; Fuquan Yang

The rat L6 myotubes is an important in vitro model system for studying signaling pathways in skeletal muscle. Exploring phosphorylation events involved in the skeletal muscle is very significant for elucidating the kinase-substrate relationship, understanding regulatory mechanisms involved in signaling pathways and providing insights into numerous cell processes. Here, we used mass spectrometry-based proteomics to conduct global phosphoproteome profiling of rat L6 myotubes. Using an efficient phosphoproteomic strategy including prefractionation of tryptic peptide mixtures with self-packed RP C18 columns, phosphopeptide enrichment with TiO(2), and 2D-LC (SCX/RP)-MS/MS analysis, a total of 2230 unique phosphopeptides from 1195 proteins were identified with a false-discovery rate of less than 1.0% using a target/decoy database searching strategy. After determining the degree of certainty of the phosphorylation site location (Ascore value >or=19), 11 Ser motifs and one Thr motif were derived from our data set using the Motif-X algorithm. Several potential signaling pathways were found in our myotubes phosphoproteome, such as the MAPK signaling pathway and the IGF-1/Insulin signaling pathway.


Molecular & Cellular Proteomics | 2015

Lysine Malonylation Is Elevated in Type 2 Diabetic Mouse Models and Enriched in Metabolic Associated Proteins

Yipeng Du; Tanxi Cai; Tingting Li; Peng Xue; Bo Zhou; Xiaolong He; Peng Wei; Pingsheng Liu; Fuquan Yang; Taotao Wei

Protein lysine malonylation, a newly identified protein post-translational modification (PTM), has been proved to be evolutionarily conserved and is present in both eukaryotic and prokaryotic cells. However, its potential roles associated with human diseases remain largely unknown. In the present study, we observed an elevated lysine malonylation in a screening of seven lysine acylations in liver tissues of db/db mice, which is a typical model of type 2 diabetes. We also detected an elevated lysine malonylation in ob/ob mice, which is another model of type 2 diabetes. We then performed affinity enrichment coupled with proteomic analysis on liver tissues of both wild-type (wt) and db/db mice and identified a total of 573 malonylated lysine sites from 268 proteins. There were more malonylated lysine sites and proteins in db/db than in wt mice. Five proteins with elevated malonylation were verified by immunoprecipitation coupled with Western blot analysis. Bioinformatic analysis of the proteomic results revealed the enrichment of malonylated proteins in metabolic pathways, especially those involved in glucose and fatty acid metabolism. In addition, the biological role of lysine malonylation was validated in an enzyme of the glycolysis pathway. Together, our findings support a potential role of protein lysine malonylation in type 2 diabetes with possible implications for its therapy in the future.


Journal of Separation Science | 2011

Preparative isolation of alkaloids from Corydalis bungeana Turcz. by high-speed counter-current chromatography using stepwise elution

Lili Niu; Zhensheng Xie; Tanxi Cai; Peng Wu; Peng Xue; Xiulan Chen; Zhi-Yong Wu; Yoichiro Ito; Famei Li; Fuquan Yang

High-speed counter-current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two-phase solvent systems composed of CHCl(3)-MeOH-(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl(3)-MeOH-0.2 M HCl (4:2:2, v/v) and CHCl(3)-MeOH-0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12-hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94-99% as determined by HPLC. Their chemical structures were characterized on the basis of (1)H-NMR, (13)C-NMR, and LC-ESI-Q-TOF-MS/MS analyses.


Journal of Proteome Research | 2010

The profile of mitochondrial proteins and their phosphorylation signaling network in INS-1 β cells

Ziyou Cui; Junjie Hou; Xiulan Chen; Jing Li; Zhensheng Xie; Peng Xue; Tanxi Cai; Peng Wu; Tao Xu; Fuquan Yang

Mitochondria have important roles in cellular physiological functions and various diseases. In pancreatic beta cells, mitochondria play a central role in glucose-stimulated insulin secretion (GSIS). To reveal the potential functions of mitochondria in the GSIS process in beta cells, shotgun proteomics was applied to profiling mitochondrial proteins and their potential phosphorylation sites in rat INS-1 cells. More than 800 proteins were assigned to mitochondria. In addition, 84 different mitochondrial phosphoproteins were identified, and 52 upstream kinases of mitochondrial phosphoproteins were predicted using bioinformatics tools. Regulation networks of mitochondrial phosphoproteins were constructed by integrating mitochondrial protein interaction networks and mitochondrial phosphorylation signaling, providing a preliminary survey of how phosphorylation signaling regulates mitochondrial function in beta cells. We present integrated resources including the protein composition and signaling pathways of mitochondria which can be used to understand the role of mitochondria in GSIS.


Journal of the American Heart Association | 2016

Macrophage Foam Cell–Derived Extracellular Vesicles Promote Vascular Smooth Muscle Cell Migration and Adhesion

Chenguang Niu; Xu Wang; Mingming Zhao; Tanxi Cai; Peibin Liu; Jizhao Li; Belinda Willard; Lingyun Zu; Enchen Zhou; Yufeng Li; Bing Pan; Fuquan Yang; Lemin Zheng

Background A new mechanism for intercellular communication has recently emerged that involves intercellular transfer of extracellular vesicles (EVs). Several studies have indicated that EVs may play a potential role in cell‐to‐cell communication between macrophage foam cells and vascular smooth muscle cells (VSMCs) in atherosclerotic lesion. Methods and Results This study involved the comparison of circulating EVs from atherosclerotic patients and control participants. The results showed that the circulation of the patients contained more leukocyte‐derived EVs and that these EVs promoted more VSMC adhesion and migration than those of healthy participants. We then established a macrophage foam cell model and characterized the EVs from the macrophages. We used flow cytometric analyses and cell migration and adhesion assays and determined that the foam cells generated more EVs than the normal macrophages and that the foam cell–derived EVs were capable of promoting increased levels of VSMC migration and adhesion. Furthermore, we performed a proteomic analysis of the EVs. The data showed that the foam cell–derived EVs may promote VSMC adhesion and migration by regulating the actin cytoskeleton and focal adhesion pathways. In addition, Western blotting revealed that foam cell–derived EVs could promote the phosphorylation of ERK and Akt in VSMCs in a time‐dependent manner. We also found that foam cell–derived EVs could enter the VSMCs and transfer integrins to the surface of these cells. Conclusions The data in our present study provide the first evidence that EVs from foam cells could promote VSMC migration and adhesion, which may be mediated by the integration of EVs into VSMCs and the subsequent downstream activation of ERK and Akt.


Proceedings of the National Academy of Sciences of the United States of America | 2017

CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development

Jianan Chen; Yongting Luo; Hui Hui; Tanxi Cai; Hongxin Huang; Fuquan Yang; Jing Feng; Jingjing Zhang; Xiyun Yan

Significance Development of the blood–brain barrier (BBB) requires spatiotemporal coordination of cerebrovascular endothelial cells (ECs) and pericytes. Until now, the molecular mechanism(s) coordinating the pericyte–EC behaviors during this process have been incompletely understood. In this study, combining the analysis of EC-/pericyte-specific Cd146-KO mice and in vitro BBB models, we report CD146 as a dynamic coordinator regulating the communication between ECs and pericytes within the neurovascular unit during BBB development. Our study demonstrates that a single cell-adhesion receptor, CD146, acts as an essential regulator to coordinate pericyte–EC communication and BBB formation during embryogenesis. Furthermore, it identifies CD146 as a potential key therapeutic target for neurological diseases related to cerebrovascular disorders. The blood–brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte–EC interaction during BBB development, the molecular mechanisms coordinating the pericyte–EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.


Briefings in Bioinformatics | 2017

SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci

Yajing Hao; Lili Zhang; Yiwei Niu; Tanxi Cai; Jianjun Luo; Shunmin He; Bao Zhang; Dejiu Zhang; Yan Qin; Fuquan Yang; Runsheng Chen

&NA; Small proteins is the general term for proteins with length shorter than 100 amino acids. Identification and functional studies of small proteins have advanced rapidly in recent years, and several studies have shown that small proteins play important roles in diverse functions including development, muscle contraction and DNA repair. Identification and characterization of previously unrecognized small proteins may contribute in important ways to cell biology and human health. Current databases are generally somewhat deficient in that they have either not collected small proteins systematically, or contain only predictions of small proteins in a limited number of tissues and species. Here, we present a specifically designed web‐accessible database, small proteins database (SmProt, http://bioinfo.ibp.ac.cn/SmProt), which is a database documenting small proteins. The current release of SmProt incorporates 255 010 small proteins computationally or experimentally identified in 291 cell lines/tissues derived from eight popular species. The database provides a variety of data including basic information (sequence, location, gene name, organism, etc.) as well as specific information (experiment, function, disease type, etc.). To facilitate data extraction, SmProt supports multiple search options, including species, genome location, gene name and their aliases, cell lines/tissues, ORF type, gene type, PubMed ID and SmProt ID. SmProt also incorporates a service for the BLAST alignment search and provides a local UCSC Genome Browser. Additionally, SmProt defines a high‐confidence set of small proteins and predicts the functions of the small proteins.


Nucleic Acids Research | 2016

MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins.

Jian Chen; Tanxi Cai; Chunwei Zheng; Xiwen Lin; Guojun Wang; Shangying Liao; Xiuxia Wang; Haiyun Gan; Daoqin Zhang; Xiangjing Hu; Si Wang; Zhen Li; Yanmin Feng; Fuquan Yang; Chunsheng Han

Abstract miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.

Collaboration


Dive into the Tanxi Cai's collaboration.

Top Co-Authors

Avatar

Fuquan Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peng Xue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhensheng Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peng Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiulan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junjie Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ziyou Cui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lili Niu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Linan Shi

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge