Tanya Comas
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanya Comas.
Glia | 2000
Joseph S. Tauskela; Kimberley Hewitt; Li Ping Kang; Tanya Comas; Tania F. Gendron; Antoine M. Hakim; Matt Hogan; Jon P. Durkin; Paul Morley
The sensitivity of six fluorophores to glutathione (GSH) was evaluated in living rat cortical neuronal/glial mixed cultures during the first 23 days in vitro (DIV). Four of the dyes require glutathione‐S‐transferase (GST) to form a fluorescent conjugate, potentially conferring specificity for GSH: these included t‐butoxycarbonyl‐Leu‐Met‐7‐amino‐4‐chloromethylcoumarin (CMAC), 7‐amino‐4‐chloromethylcoumarin (CMAC‐blue), monochlorobimane (MCB), and 5‐chloromethylfluorescein diacetate (CMFDA). The final two dyes examined, 2,3‐naphthalenedicarboxaldehyde (NDA) and o‐phthaldehyde (OPD), do not require GST for adduct formation with GSH. To examine the specificity of the dyes for GSH, cultures grown less than 6 DIV were pretreated with diethyl maleate or DL‐buthionine‐(S,R)‐sulfoximine to deplete endogenous GSH. This resulted in a substantial loss of staining by CMAC, CMAC‐blue, and MCB and partial loss of staining by OPD, indicating specificity for GSH, while staining by CMFDA or NDA was not altered, indicating a lack of specificity for GSH. Neurons experienced a dramatic decline in GSH levels relative to astrocytes between 5–6 DIV, as shown by a loss of neuronal staining with CMAC, CMAC‐blue and MCB. This decrease in staining was not due to a decrease in GST activity, as neurons stained with the GST‐insensitive OPD also exhibited a decline in GSH‐sensitive staining. Immunolabeling experiments demonstrated that CMAC staining co‐localized with GFAP‐positive astrocytes, but not with MAP‐2‐positive neurons, in 18 DIV cultures. Finally, CMAC was exploited as a specific morphological marker of astrocytes in cultures aged >5 DIV. CMAC staining was employed to monitor astrocyte proliferation and to resolve astrocytes in living mixed cultures co‐loaded with the Ca2+‐sensitive dye, calcium green 5N‐AM. GLIA 30:329–341, 2000. Published 2000 Wiley‐Liss, Inc.
Brain Research | 1999
Joseph S. Tauskela; Balu Chakravarthy; Christine L. Murray; Yizheng Wang; Tanya Comas; Matthew J. Hogan; Antoine M. Hakim; Paul Morley
Ca2+ influx and activation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) during nonlethal ischemic preconditioning have been implicated in the protection of the heart against subsequent lethal ischemic injury. Thus, we determined if Ca2+ influx, PKC and MAPK also mediate ischemic preconditioning-induced protection in neurons. Preconditioning by exposure of E18 rat cortical cultures to 90 min of nonlethal oxygen-glucose deprivation (OGD) 24 h prior to 180-240 min of lethal OGD was neuroprotective. Exposure to nominally free Ca2+, or blockade of the alpha-amino-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptor with CNQX did not eliminate protection. MAPK activity did not change and PKC activity decreased by 50% relative to normal baseline levels at 0 and 24 h following preconditioning. The sustained decrease in PKC activity was not due to a loss of enzyme as determined from immunoblots using pan and epsilon-, beta- and zeta-specific PKC antibodies. Neuroprotection was maintained with pharmacological inhibition of PKC activity by staurosporine, chelerythrine and calphostin C and MAPK activity by PD 98059 during preconditioning, indicating that activation of these enzymes during preconditioning was not necessary for protection. Therefore, in contrast to cardiac tissue, ischemic preconditioning of neurons does not require activation of PKC and MAP kinase, and protection is maintained with substantial removal of extracellular Ca2+ or blockade of the AMPA receptor.
Journal of Biological Chemistry | 2008
Joseph S. Tauskela; Hung Fang; Melissa Hewitt; Eric Brunette; Tarun Ahuja; Jean-Philippe Thivierge; Tanya Comas; Geoffrey Mealing
Tolerance to otherwise lethal cerebral ischemia in vivo or to oxygen-glucose deprivation (OGD) in vitro can be induced by prior transient exposure to N-methyl-d-aspartic acid (NMDA): preconditioning in this manner activates extrasynaptic and synaptic NMDA receptors and can require bringing neurons to the “brink of death.” We considered if this stressful requirement could be minimized by the stimulation of primarily synaptic NMDA receptors. Subjecting cultured cortical neurons to prolonged elevations in electrical activity induced tolerance to OGD. Specifically, exposing cultures to a K+-channel blocker, 4-aminopyridine (20–2500 μm), and a GABAA receptor antagonist, bicuculline (50 μm) (4-AP/bic), for 1–2 days resulted in potent tolerance to normally lethal OGD applied up to 3 days later. Preconditioning induced phosphorylation of ERK1/2 and CREB which, along with Ca2+ spiking and OGD tolerance, was eliminated by tetrodotoxin. Antagonists of NMDA receptors or l-type voltage-gated Ca2+ channels (L-VGCCs) applied during preconditioning decreased Ca2+ spiking, phosphorylation of ERK1/2 and CREB, and OGD tolerance more effectively when combined, particularly at the lowest 4-AP concentration. Inhibiting ERK1/2 or Ca2+/calmodulin-dependent protein kinases (CaMKs) also reduced Ca2+ spiking and OGD tolerance. Preconditioning resulted in altered neuronal excitability for up to 3 days following 4-AP/bic washout, based on field potential recordings obtained from neurons cultured on 64-channel multielectrode arrays. Taken together, the data are consistent with action potential-driven co-activation of primarily synaptic NMDA receptors and L-VGCCs, resulting in parallel phosphorylation of ERK1/2 and CREB and involvement of CaMKs, culminating in a potent, prolonged but reversible, OGD-tolerant phenotype.
Neuroscience | 2001
Joseph S. Tauskela; Tanya Comas; K Hewitt; Robert Monette; J Paris; Matthew J. Hogan; Paul Morley
In vitro ischemic preconditioning induced by subjecting rat cortical cultures to nonlethal oxygen-glucose deprivation protects against a subsequent exposure to otherwise lethal oxygen-glucose deprivation. We provide evidence that attenuation of the postsynaptic N-methyl-D-aspartate (NMDA) receptor- and Ca(2+)-dependent neurotoxicity underlies oxygen-glucose deprivation tolerance. It is demonstrated that extended tolerance to otherwise lethal NMDA or oxygen-glucose deprivation can be induced by either of their sublethal forms of preconditioning. These four pathways are linked, since NMDA receptor blockade during preconditioning by oxygen-glucose deprivation eliminates tolerance. These results suggest that NMDA tolerance, induced by nonlethal activation of these receptors during oxygen-glucose deprivation preconditioning, underlies oxygen-glucose deprivation tolerance. Several neurotoxic downstream Ca(2+)-dependent signaling events specifically linked to NMDA receptor activation are attenuated during otherwise lethal oxygen-glucose deprivation in preconditioned cultures. Specifically, calpain activation, as well as degradation of microtubule-associated protein-2 and postsynaptic density-95, are attenuated 2 h following otherwise lethal NMDA treatment alone or oxygen-glucose deprivation in preconditioned cultures. Formation of microtubule-associated protein-2-labeled dendritic varicosities is also attenuated in preconditioned cultures within 1 h of lethal oxygen-glucose deprivation or NMDA application. Intracellular Ca(2+) levels, measured using the high- or low-affinity dyes Fluo-4 (K(d) approximately equal 345 nM) or Fluo-4FF (K(d) approximately equal 9.7 microM) respectively, are markedly attenuated during lethal oxygen-glucose deprivation in preconditioned cultures.Collectively, the results suggest the attenuation of the postsynaptic NMDA-mediated component of otherwise lethal oxygen-glucose deprivation through the suppression of Ca(2+)-dependent neurotoxic signaling, a mechanism that is initially induced by transient nonlethal activation of this receptor during ischemic preconditioning.
The FASEB Journal | 2005
Joseph S. Tauskela; Eric Brunette; Natasha O'Reilly; Geoff Mealing; Tanya Comas; Tania F. Gendron; Robert Monette; Paul Morley
This study challenges the conventional view that metalloporphyrins protect cultured cortical neurons in models of cerebral ischemia by acting as intracellular catalytic antioxidants [superoxide dismutase (SOD) mimetics]. High SOD‐active MnIIIporphyrins meso‐substituted with N, N′‐dimethylimidazolium or N‐alkylpyridinium groups did not protect neurons against oxygen‐glucose deprivation (OGD), although lower SOD‐active and ‐inactive para isomers protected against N‐methyl‐d‐aspartate (NMDA) exposure. MnIIImeso‐tetrakis(4‐benzoic acid)porphyrin (MnIIITBAP), as well as SOD‐inactive metalloTBAPs and other phenyl ring‐ or β‐substituted metalloporphyrins that contained redox‐insensitive metals, protected cultures against OGD and NMDA neurotoxicity. Crucially, neuroprotective metalloporphyrins suppressed OGD‐ or NMDA‐induced rises in intracellular Ca2+ concentration in the same general rank order as observed for neuroprotection. Results from paraquat toxicity, intracellular fluorescence quenching, electrophysiology, mitochondrial Ca2+, and spontaneous synaptic activity experiments suggest a model in which metalloporphyrins, acting at the plasma membrane, protect neurons against OGD by suppressing postsynaptic NMDA receptor‐mediated Ca2+ rises, thereby indirectly preventing accumulation of neurotoxic mitochondrial Ca2+ levels. Though neuroprotective in a manner not originally intended, SOD‐inactive metalloporphyrins may represent promising therapeutic agents in diseases such as cerebral ischemia, in which Ca2+ toxicity is implicated. Conventional syntheses aimed at improving the catalytic antioxidant capability and/or intracellular access of metalloporphyrins may not yield improved efficacy in some disease models.
Neuroscience Letters | 2001
Sheng T. Hou; Emily Cowan; Stevan Dostanic; Ingrid Rasquinha; Tanya Comas; Paul Morley; John P. MacManus
The transcription factor E2F1 mRNA and protein levels increased in rat cortical neurons in response to dopamine (DA)- or 6-hydroxydopamine (OHDA)-evoked apoptosis. Increased E2F1 protein was detected in the nucleus of neurons by double fluorescent immunocytochemistry using antibodies to E2F1 and NeuN. DA and 6-OHDA induced caspase-3-mediated apoptosis of cortical neurons which was attenuated by the addition of antioxidants or caspase-3 inhibitors to the cultures. Antioxidants prevented DA-evoked neuronal apoptosis, and also attenuated the increase in E2F1 expression. These findings suggest that increased expression of the transcription factor E2F1 may serve as a death signal during DA-evoked neuronal apoptosis.
Frontiers in Pharmacology | 2011
Christophe Py; Marzia Martina; Gerardo A. Diaz-Quijada; Collin C. Luk; Dolores Martinez; M. W. Denhoff; Anne Charrier; Tanya Comas; Robert Monette; Anthony Krantis; Naweed I. Syed; Geoffrey Mealing
All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells.
Biotechnology and Bioengineering | 2010
Christophe Py; M. W. Denhoff; Marzia Martina; Robert Monette; Tanya Comas; Tarun Ahuja; Dolores Martinez; Simon Wingar; Juan Caballero; Sylvain R. Laframboise; John G. Mielke; Alexei Bogdanov; Collin C. Luk; Naweed I. Syed; Geoff Mealing
We report on a simple and high‐yield manufacturing process for silicon planar patch‐clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high‐quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high‐impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high‐fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole‐cell current recordings obtained from a voltage‐clamp stimulation protocol, and in current‐clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch‐clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high‐information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. Biotechnol. Bioeng. 2010;107:593–600.
Biotechnology and Bioengineering | 2010
Anne Charrier; Dolores Martinez; Robert Monette; Tanya Comas; Raluca Movileanu; Christophe Py; M. W. Denhoff; Anthony Krantis; Geoff Mealing
Interface devices such as integrated planar patch‐clamp chips are being developed to study the electrophysiological activity of neuronal networks grown in vitro. The utility of such devices will be dependent upon the ability to align neurons with interface features on the chip by controlling neuronal placement and by guiding cell connectivity. In this paper, we present a strategy to accomplish this goal. Patterned chemical modification of SiN surfaces with poly‐d‐lysine transferred from PDMS stamps was used to promote adhesion and guidance of cryo‐preserved primary rat cortical neurons. We demonstrate that these neurons can be positioned and grown over microhole features which will ultimately serve as patch‐clamp interfaces on the chip. Biotechnol. Bioeng. 2010; 105: 368–373.
Biomedical Microdevices | 2010
Dolores Martinez; Christophe Py; M. W. Denhoff; Marzia Martina; Robert Monette; Tanya Comas; Collin C. Luk; Naweed I. Syed; Geoff Mealing
We present a polymer microchip capable of monitoring neuronal activity with a fidelity never before obtained on a planar patch-clamp device. Cardio-respiratory neurons Left Pedal Dorsal 1 (LPeD1) from mollusc Lymnaea were cultured on the microchip’s polyimide surface for 2 to 4 hours. Cultured neurons formed high resistance seals (gigaseals) between the cell membrane and the surface surrounding apertures etched in the polyimide. Gigaseal formation was observed without applying external force, such as suction, on neurons. The formation of gigaseals, as well as the low access resistance and shunt capacitance values of the polymer microchip resulted in high-fidelity recordings. On-chip culture of neurons permitted, for the first time on a polymeric patch-clamp device, the recording of high fidelity physiological action potentials. Microfabrication of the hybrid poly(dimethylsiloxane)—polyimide (PDMS-PI) microchip is discussed, including a two-layer PDMS processing technique resulting in minimized shrinking variations.