Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanya L. Russell is active.

Publication


Featured researches published by Tanya L. Russell.


Malaria Journal | 2011

Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania

Tanya L. Russell; Nicodem J. Govella; Salum Azizi; Chris Drakeley; S. Patrick Kachur; Gerry F. Killeen

BackgroundInsecticide-treated nets (ITNs) and indoor residual spraying (IRS) represent the front-line tools for malaria vector control globally, but are optimally effective where the majority of baseline transmission occurs indoors. In the surveyed area of rural southern Tanzania, bed net use steadily increased over the last decade, reducing malaria transmission intensity by 94%.MethodsStarting before bed nets were introduced (1997), and then after two milestones of net use had been reached-75% community-wide use of untreated nets (2004) and then 47% use of ITNs (2009)-hourly biting rates of malaria vectors from the Anopheles gambiae complex and Anopheles funestus group were surveyed.ResultsIn 1997, An. gambiae s.l. and An. funestus mosquitoes exhibited a tendency to bite humans inside houses late at night. For An. gambiae s.l., by 2009, nocturnal activity was less (p = 0.0018). At this time, the sibling species composition of the complex had shifted from predominantly An. gambiae s.s. to predominantly An. arabiensis. For An. funestus, by 2009, nocturnal activity was less (p = 0.0054) as well as the proportion biting indoors (p < 0.0001). At this time, An. funestus s.s. remained the predominant species within this group. As a consequence of these altered feeding patterns, the proportion (mean ± standard error) of human contact with mosquitoes (bites per person per night) occurring indoors dropped from 0.99 ± 0.002 in 1997 to 0.82 ± 0.008 in 2009 for the An. gambiae complex (p = 0.0143) and from 1.00 ± <0.001 to only 0.50 ± 0.048 for the An. funestus complex (p = 0.0004) over the same time period.ConclusionsHigh usage of ITNs can dramatically alter African vector populations so that intense, predominantly indoor transmission is replaced by greatly lowered residual transmission, a greater proportion of which occurs outdoors. Regardless of the underlying mechanism, the residual, self-sustaining transmission will respond poorly to further insecticidal measures within houses. Additional vector control tools which target outdoor biting mosquitoes at the adult or immature stages are required to complement ITNs and IRS.


Malaria Journal | 2010

Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets

Tanya L. Russell; Dickson W. Lwetoijera; Deodatus Maliti; Beatrice Chipwaza; Japhet Kihonda; J. Derek Charlwood; Thomas Smith; Christian Lengeler; Mathew Alexander Mwanyangala; Rose Nathan; Bart G. J. Knols; Willem Takken; Gerry F. Killeen

BackgroundThe communities of Namawala and Idete villages in southern Tanzania experienced extremely high malaria transmission in the 1990s. By 2001-03, following high usage rates (75% of all age groups) of untreated bed nets, a 4.2-fold reduction in malaria transmission intensity was achieved. Since 2006, a national-scale programme has promoted the use of longer-lasting insecticide treatment kits (consisting of an insecticide plus binder) co-packaged with all bed nets manufactured in the country.MethodsThe entomological inoculation rate (EIR) was estimated through monthly surveys in 72 houses randomly selected in each of the two villages. Mosquitoes were caught using CDC light traps placed beside occupied bed nets between January and December 2008 (n = 1,648 trap nights). Sub-samples of mosquitoes were taken from each trap to determine parity status, sporozoite infection and Anopheles gambiae complex sibling species identity.ResultsCompared with a historical mean EIR of ~1400 infectious bites/person/year (ib/p/y) in 1990-94; the 2008 estimate of 81 ib/p/y represents an 18-fold reduction for an unprotected person without a net. The combined impact of longer-lasting insecticide treatments as well as high bed net coverage was associated with a 4.6-fold reduction in EIR, on top of the impact from the use of untreated nets alone. The scale-up of bed nets and subsequent insecticidal treatment has reduced the density of the anthropophagic, endophagic primary vector species, Anopheles gambiae sensu stricto, by 79%. In contrast, the reduction in density of the zoophagic, exophagic sibling species Anopheles arabiensis was only 38%.ConclusionInsecticide treatment of nets reduced the intensity of malaria transmission in addition to that achieved by the untreated nets alone. Impacts were most pronounced against the highly anthropophagic, endophagic primary vector, leading to a shift in the sibling species composition of the A. gambiae complex.


Malaria Journal | 2008

Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania

Heather M. Ferguson; Kija R Ng'habi; Thomas Walder; Demetrius Kadungula; Sarah J Moore; Issa N. Lyimo; Tanya L. Russell; Honorathy Urassa; Hassan Mshinda; Gerry F. Killeen; Bart G. J. Knols

BackgroundMedical entomologists increasingly recognize that the ability to make inferences between laboratory experiments of vector biology and epidemiological trends observed in the field is hindered by a conceptual and methodological gap occurring between these approaches which prevents hypothesis-driven empirical research from being conducted on relatively large and environmentally realistic scales. The development of Semi-Field Systems (SFS) has been proposed as the best mechanism for bridging this gap. Semi-field systems are defined as enclosed environments, ideally situated within the natural ecosystem of a target disease vector and exposed to ambient environmental conditions, in which all features necessary for its life cycle completion are present. Although the value of SFS as a research tool for malaria vector biology is gaining recognition, only a few such facilities exist worldwide and are relatively small in size (< 100 m2).MethodsThe establishment of a 625 m2 state-of-the-art SFS for large-scale experimentation on anopheline mosquito ecology and control within a rural area of southern Tanzania, where malaria transmission intensities are amongst the highest ever recorded, is described.ResultsA greenhouse frame with walls of mosquito netting and a polyethylene roof was mounted on a raised concrete platform at the Ifakara Health Institute. The interior of the SFS was divided into four separate work areas that have been set up for a variety of research activities including mass-rearing for African malaria vectors under natural conditions, high throughput evaluation of novel mosquito control and trapping techniques, short-term assays of host-seeking behaviour and olfaction, and longer-term experimental investigation of anopheline population dynamics and gene flow within a contained environment that simulates a local village domestic setting.ConclusionThe SFS at Ifakara was completed and ready for use in under two years. Preliminary observations indicate that realistic and repeatable observations of anopheline behaviour are obtainable within the SFS, and that habitat and climatic features representative of field conditions can be simulated within it. As work begins in the SFS in Ifakara and others around the world, the major opportunities and challenges to the successful application of this tool for malaria vector research and control are discussed.


Malaria Journal | 2013

Successful malaria elimination strategies require interventions that target changing vector behaviours

Tanya L. Russell; Nigel W. Beebe; R. D. Cooper; Neil F. Lobo; Thomas R. Burkot

BackgroundThe ultimate long-term goal of malaria eradication was recently placed back onto the global health agenda. When planning for this goal, it is important to remember why the original Global Malaria Eradication Programme (GMEP), conducted with DDT-based indoor residual spraying (IRS), did not achieve its goals. One of the technical reasons for the failure to eliminate malaria was over reliance on a single intervention and subsequently the mosquito vectors developed behavioural resistance so that they did not come into physical contact with the insecticide.Hypothesis and how to test itCurrently, there remains a monolithic reliance on indoor vector control. It is hypothesized that an outcome of long-term, widespread control is that vector populations will change over time, either in the form of physiological resistance, changes in the relative species composition or behavioural resistance. The potential for, and consequences of, behavioural resistance was explored by reviewing the literature regarding vector behaviour in the southwest Pacific.DiscussionHere, two of the primary vectors that were highly endophagic, Anopheles punctulatus and Anopheles koliensis, virtually disappeared from large areas where DDT was sprayed. However, high levels of transmission have been maintained by Anopheles farauti, which altered its behaviour to blood-feed early in the evening and outdoors and, thereby, avoiding exposure to the insecticides used in IRS. This example indicates that the efficacy of programmes relying on indoor vector control (IRS and long-lasting, insecticide-treated nets [LLINs]) will be significantly reduced if the vectors change their behaviour to avoid entering houses.ConclusionsBehavioural resistance is less frequently seen compared with physiological resistance (where the mosquito contacts the insecticide but is not killed), but is potentially more challenging to control programmes because the intervention effectiveness cannot be restored by rotating the insecticide to one with a different mode of action. The scientific community needs to urgently develop systematic methods for monitoring behavioural resistance and then to work in collaboration with vector control programmes to implement monitoring in sentinel sites. In situations where behavioural resistance is detected, there will be a need to target other bionomic vulnerabilities that may exist in the larval stages, during mating, sugar feeding or another aspect of the life cycle of the vector to continue the drive towards elimination.


Malaria Journal | 2009

Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence.

Ladslaus L. Mnyone; Matthew J. Kirby; Dickson W. Lwetoijera; Monica W. Mpingwa; Bart G. J. Knols; Willem Takken; Tanya L. Russell

BackgroundEntomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana isolates have been shown to infect and reduce the survival of mosquito vectors.MethodsHere four different bioassays were conducted to study the effect of conidia concentration, co-formulation, exposure time and persistence of the isolates M. anisopliae ICIPE-30 and B. bassiana I93-925 on infection and survival rates of female Anopheles gambiae sensu stricto. Test concentrations and exposure times ranged between 1 × 107 - 4 × 1010 conidia m-2 and 15 min - 6 h. In co-formulations, 2 × 1010 conidia m-2 of both fungus isolates were mixed at ratios of 4:1, 2:1, 1:1,1:0, 0:1, 1:2 and 1:4. To determine persistence, mosquitoes were exposed to surfaces treated 1, 14 or 28 d previously, with conidia concentrations of 2 × 109, 2 × 1010 or 4 × 1010.ResultsMosquito survival varied with conidia concentration; 2 × 1010 conidia m-2 was the concentration above which no further reductions in survival were detectable for both isolates of fungus. The survival of mosquitoes exposed to single and co-formulated treatments was similar and no synergistic or additive effects were observed. Mosquitoes were infected within 30 min and longer exposure times did not result in a more rapid killing effect. Fifteen min exposure still achieved considerable mortality rates (100% mortality by 14 d) of mosquitoes, but at lower speed than with 30 min exposure (100% mortality by 9 d). Conidia remained infective up to 28 d post-application but higher concentrations did not increase persistence.ConclusionBoth fungus isolates are effective and persistent at low concentrations and short exposure times.


Parasites & Vectors | 2012

Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, south-east Zambia

Aklilu Seyoum; Chadwick Sikaala; Javan Chanda; Dingani Chinula; Alex J. Ntamatungiro; Moonga Hawela; John M Miller; Tanya L. Russell; Olivier J. T. Briët; Gerry F. Killeen

BackgroundCurrent front line malaria vector control methods such as indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), rely upon the preference of many primary vectors to feed and/or rest inside human habitations where they can be targeted with domestically-applied insecticidal products. We studied the human biting behaviour of the malaria vector Anopheles funestus Giles and the potential malaria vector Anopheles quadriannulatus Theobald in Luangwa valley, south-east Zambia.MethodsMosquitoes were collected by human landing catch in blocks of houses with either combined use of deltamethrin-based IRS and LLINs or LLINs alone. Human behaviour data were collected to estimate how much exposure to mosquito bites indoors and outdoors occurred at various times of the night for LLIN users and non-users.ResultsAnopheles funestus and An. quadriannulatus did not show preference to bite either indoors or outdoors: the proportions [95% confidence interval] caught indoors were 0.586 [0.303, 0.821] and 0.624 [0.324, 0.852], respectively. However, the overwhelming majority of both species were caught at times when most people are indoors. The proportion of mosquitoes caught at a time when most people are indoors were 0.981 [0.881, 0.997] and 0.897 [0.731, 0.965], respectively, so the proportion of human exposure to both species occuring indoors was high for individuals lacking LLINs (An. funestus: 0.983 and An. quadriannulatus: 0.970, respectively). While LLIN users were better protected, more than half of their exposure was nevertheless estimated to occur indoors (An. funestus: 0.570 and An. quadriannulatus: 0.584).ConclusionsThe proportion of human exposure to both An. funestus and An. quadriannulatus occuring indoors was high in the area and hence both species might be responsive to further peri-domestic measures if these mosquitoes are susceptible to insecticidal products.


Malaria Journal | 2012

Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

Ladslaus L. Mnyone; Issa N. Lyimo; Dickson W. Lwetoijera; Monica W. Mpingwa; Nuru Nchimbi; Penelope Hancock; Tanya L. Russell; Matthew J. Kirby; Willem Takken; Constantianus J. M. Koenraadt

BackgroundControl of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania.ResultsSurvival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced.ConclusionsEntomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy.


Malaria Journal | 2011

Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

Hugo Bugoro; R. D. Cooper; Charles Butafa; Charles Iro'ofa; Donna O Mackenzie; Cheng-Chen Chen; Tanya L. Russell

BackgroundIn the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control.MethodsIn the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets.ResultsAnopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention.ConclusionIn an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the effectiveness of IRS and the personal protection provided by bed nets is compromised. To achieve elimination, any residual transmission should be targeted using integrated vector control incorporating complementary tools such as larviciding and/or zooprophylaxis.


Parasites & Vectors | 2010

An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

Dickson W. Lwetoijera; Robert D. Sumaye; Edith P. Madumla; Deogratius R Kavishe; Ladslaus L. Mnyone; Tanya L. Russell; Fredros O Okumu

Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS), can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 × 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P < 0.0001) and high quantity of conidia (eave baffles plus two cotton panels; HR = 2.32, P < 0.0001). We conclude that high infection rates of entomopathogenic fungi on wild malaria vectors and possibly significant disruption of malaria transmission can be achieved if the fungus is delivered using optimally located outdoor odor-baited stations.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

Tanya L. Russell; Dickson W. Lwetoijera; Bart G. J. Knols; Willem Takken; Gerry F. Killeen; Heather M. Ferguson

Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.

Collaboration


Dive into the Tanya L. Russell's collaboration.

Top Co-Authors

Avatar

R. D. Cooper

National University of Colombia

View shared research outputs
Top Co-Authors

Avatar

Neil F. Lobo

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Nigel W. Beebe

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Hugo Bugoro

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Gerry F. Killeen

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willem Takken

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Bart G. J. Knols

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian H. Kay

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge