Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tao Chen is active.

Publication


Featured researches published by Tao Chen.


Environmental Health Perspectives | 2010

Low Doses of the Carcinogen Furan Alter Cell Cycle and Apoptosis Gene Expression in Rat Liver Independent of DNA Methylation

Tao Chen; Angela Mally; Sibel Ozden; J. Kevin Chipman

Background Evidence of potent rodent carcinogenicity via an unclear mechanism suggests that furan in various foods [leading to an intake of up to 3.5 μg/kg body weight (bw)/day] may present a potential risk to human health. Objectives We tested the hypothesis that altered expression of genes related to cell cycle control, apoptosis, and DNA damage may contribute to the carcinogenicity of furan in rodents. In addition, we investigated the reversibility of such changes and the potential role of epigenetic mechanisms in response to furan doses that approach the maximum estimated dietary intake in humans. Methods The mRNA expression profiles of genes related to cell cycle, apoptosis, and DNA damage in rat liver treated with furan concentrations of 0.1 and 2 mg/kg bw were measured by quantitative polymerase chain reaction (PCR) arrays. We assessed epigenetic changes by analysis of global and gene-specific DNA methylation [methylation-specific PCR, combined bisulfite restriction analysis (COBRA), and methylated DNA immunoprecipitation chip] and microRNA (miRNA) analyses. Results The expression profiles of apoptosis-related and cell-cycle–related genes were unchanged after 5 days of treatment, although we observed a statistically significant change in the expression of genes related to cell cycle control and apoptosis, but not DNA damage, after 4 weeks of treatment. These changes were reversed after an off-dose period of 2 weeks. None of the gene expression changes was associated with a change in DNA methylation, although we detected minor changes in the miRNA expression profile (5 miRNA alterations out of 349 measured) that may have contributed to modification of gene expression in some cases. Conclusion Nongenotoxic changes in gene expression may contribute to the carcinogenicity of furan in rodents. These findings highlight the need for a more comprehensive risk assessment of furan exposure in humans.


Toxicology | 2012

Gene expression and epigenetic changes by furan in rat liver

Tao Chen; Timothy Williams; Angela Mally; Carolin Hamberger; Leda Mirbahai; Kevin Hickling; J. Kevin Chipman

Furan, a widely used industrial compound, has been found in a number of heated food items. Furan is carcinogenic to rats and mice, but the mechanism behind its carcinogenic effect is still not well understood. In this study, we tested the hypothesis that alteration of gene expression relating to cell cycle, apoptosis, DNA damage and of epigenetic modifications including miRNA and DNA methylation may contribute to rodent carcinogenicity of furan. Using quantitative PCR arrays specific to cell cycle-, apoptosis- and DNA damage-related genes, we found that three months furan treatment at 30 mg/kg (5 daily doses per week) induced extensive mRNA expression changes (largely up-regulation) in male Sprague Dawley rat liver, and the gene expression changes did not fully recover after a one month withdrawal of furan. We also found 18 miRNAs were up-regulated and 12 were down-regulated by PCR arrays. Many of these deregulated miRNAs were also found to have similar changes in furan-induced tumour samples. Both hyper- and hypo-methylation of specific gene promoter regions were identified and validated in the 3-month samples and tumour samples by microarray and COBRA (combined bisulfite restriction analysis). No global DNA methylation change was found in the 3 month treatment groups by LC-MS/MS, while furan-induced tumour samples showed global hypomethylation compared to non-tumour tissues. In conclusion, three months furan treatment at a carcinogenic dose resulted in irreversible gene expression changes, miRNA modulation and DNA methylation alteration in combination with a DNA-damage response, which suggests that non-genotoxic mechanisms are important for furan carcinogenicity.


PLOS ONE | 2014

Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver

Yan Jiang; Jiahong Chen; Jian Tong; Tao Chen

Trichloroethylene (TCE), widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s) for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day) for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.


Toxicology | 2016

Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos

Hang Zhang; Yugang Yao; Yang Chen; Cong Yue; Jiahong Chen; Jian Tong; Yan Jiang; Tao Chen

Recent studies have shown an association between congenital heart defects and air fine particle matter (PM2.5), but the molecular mechanisms remain elusive. It is well known that a number of organic compounds in PM2.5 can act as AhR agonists, and activation of AhR can antagonize Wnt/β-catenin signaling. Therefore, we hypothesized that PM2.5 could activate AhR and then repress the expression of wnt/β-catenin targeted genes essential for cardiogenesis, resulting in heart defects. To test this hypothesis, we investigated the effects of extractable organic matter (EOM) from PM2.5 on AhR and Wnt/β-catenin signal pathways in zebrafish embryos. We confirmed that EOM could cause malformations in the heart and decreased heart rate in zebrafish embryos at 72hpf, and found that the EOM-induced heart defects were rescued in embryos co-exposed with EOM plus AhR antagonist CH223191 or β-catenin agonist CHIR99021. We further found that EOM had increased the expression levels of AhR targeted genes (Cyp1a1, Cyp1b1 and Ahrra) and reduced the mRNA levels of β-catenin targeted genes (axin2, nkx2.5 and sox9b). The mRNA expression level of Rspo2, a β-catenin upstream gene, was also decreased in embryos exposed to EOM. Supplementation with CH223191 or CHIR99021 attenuated most of the EOM-induced expression changes of genes involved in both AhR and wnt/β-catenin signal pathways. However, the mRNA expression level of AhR inhibitor Ahrrb, which did not change by EOM treatment alone, was increased in embryos co-exposed to EOM plus CH223191 or CHIR99021. We conclude that the activation of AhR by EOM from PM2.5 might repress wnt/β-catenin signaling, leading to heart defects in zebrafish embryos. Furthermore, our results indicate that the cardiac developmental toxicity of PM2.5 might be prevented by targeting AhR or wnt/β-catenin signaling.


Toxicology and Applied Pharmacology | 2015

Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure.

Sibel Ozden; Neslihan Turgut Kara; Osman Ugur Sezerman; İlknur Melis Durası; Tao Chen; Goksun Demirel; Buket Alpertunga; J. Kevin Chipman; Angela Mally

Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC-MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity.


Toxicology | 2008

A quantitative inverse relationship between connexin32 expression and cell proliferation in a rat hepatoma cell line.

Gareth Owain Edwards; Shrikant Jondhale; Tao Chen; J. Kevin Chipman

Gap junctions comprised of connexin proteins are involved in direct intercellular communication and the regulation of cell behaviour and homeostasis. Reduced connexin expression and loss of gap junction function is a characteristic of many cancer cells and of the effect of many non-genotoxic carcinogens that induce cell proliferation. Moreover, when certain cancer cell lines are transfected with specific connexin genes, cells can regain control over proliferation. We have employed RNA interference and dexamethasone to modulate connexin32 expression in MH(1)C(1) cells to a range of concentrations. This allowed the determination of the quantitative relationship between connexin32 protein expression and cell proliferation. The magnitude of cell proliferation, measured by bromodeoxyuridine incorporation, was inversely proportional to the level of connexin32 expression. Q-PCR indicated a lack of change of expression of a range of cell cycle-related genes at 24h. The inverse relationship between Cx32 expression and proliferation was continuous, and a threshold level of reduction of connexin32 was not observable for an influence on proliferation.


Molecular Oncology | 2015

Development of pharmacodynamic biomarkers for ATR inhibitors

Tao Chen; Fiona K. Middleton; Susanna Falcon; Philip Michael Reaper; John Pollard; Nicola J. Curtin

ATR, which signals DNA damage to S/G2 cell cycle checkpoints and for repair, is an attractive target in cancer therapy. ATR inhibitors are being developed and a pharmacodynamic assay is needed to support clinical studies.


Toxicology Letters | 2017

Autophagy associated cytotoxicity and cellular uptake mechanisms of bismuth nanoparticles in human kidney cells

Yongming Liu; Jing Zhuang; Xihui Zhang; Cong Yue; Ning Zhu; Liecheng Yang; Yong Wang; Tao Chen; Yangyun Wang; Leshuai W. Zhang

Bismuth compounds have been used for treatment of bacterial infection, and recently bismuth nanoparticles (BiNP) were synthesized for imaging and diagnostic purpose, while safety concern of bismuth cannot be ignored. Here, we prepared ultrasmall BiNP and showed an enhanced tumor imaging, but BiNP revealed a differentiated cytotoxicity in human embryonic kidney 293 cells (HEK293) compared to other cell types. For the first time, we found that BiNP can induce autophagy, shown as the increase of monodansylcadaverine fluorescence staining and the amount of LC3II that can be inhibited by 3-MA. BiNP were capable of entering cells in a dose and time dependent manner by fluorescence and element detection methods BiNP were found to be localized in the cytoplasm observed by transmission electron microscopy and intracellular bismuth element confirmed by energy dispersive X-ray analysis. Using endocytic inhibitors, BiNP were found to require ATP and endosomal trafficking pathways for their cellular uptake. Internalized BiNP did not co-localize with EEA1, but co-localized with Lysotracker/LAMP1/LAMP2 at late time points, indicating BiNP may be retained in the non-early endosomal vacuoles and late endosomes. With our novel finding of bismuth induced autophagy and endocytic mechanisms, potential approaches may be applied to reduce the toxicity by bismuth.


Environmental Toxicology | 2016

Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene

Yan Jiang; Dan Wang; Guoxing Zhang; Guoqing Wang; Jian Tong; Tao Chen

Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species‐specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro‐34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up‐regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc‐7/cTnT gene in cardiac cells; and (3) significant interference with Ca2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species‐specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure.


Journal of Toxicology and Environmental Health | 2017

Aberrant DNA methylation in radon and/or cigarette smoke-induced malignant transformation in BEAS-2B human lung cell line

Huanhuan Huang; Yahui Ji; Jiayu Zhang; Zhigang Su; Mingxing Liu; Jian Tong; Cuicui Ge; Tao Chen; Jianxiang Li

ABSTRACT It is well known that cigarette smoking (CS) and/or radon (Rn) induce malignant transformation in lung cells. To investigate the mechanisms underlying lung carcinogenesis induced by CS, Rn; or Rn followed by CS using BEAS-2B cell line derived from human bronchial epithelial cells. BEAS-2B cells were exposed to either Rn (20,000 Bq/m3) for 30 min or CS (20%) for 10 min or Rn followed by CS for 40 min. Global and gene-specific DNA methylation modifications were measured by microarray and methylation-specific polymerase chain reaction. Cell cycle and apoptosis were determined by flow cytometry, while soft agar colony formation was conducted to assess the characteristics of malignant transformation. Data demonstrated global hypomethylation as well as gene-specific DNA methylation alterations in all treatment groups compared to unexposed control cells. In addition, Rn and CS produced DNA hypermethylation of protein tyrosine phosphatase receptor type M and ectodysplasin A2 receptor, two genes related to malignant transformation. In all treatment conditions, cell proliferation and survival of malignant cells was increased, while apoptosis was initially first passage elevated but decreased at passages 5–15. Our results indicate that aberrant DNA methylation plays an important role in Rn- and/or CS-induced malignant transformation. In addition, BEAS-2B cell line may be used as an in vitro model to investigate mechanisms underlying malignant transformation induced by ambient environmental contaminants.

Collaboration


Dive into the Tao Chen's collaboration.

Top Co-Authors

Avatar

Angela Mally

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Chipman

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kevin Hickling

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yugang Yao

Hong Kong Environmental Protection Department

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge