Tao Cheng
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tao Cheng.
Science | 2016
Mufan Li; Zipeng Zhao; Tao Cheng; Alessandro Fortunelli; Chih-Yen Chen; Rong Yu; Qinghua Zhang; Lin Gu; Boris V. Merinov; Zhaoyang Lin; Enbo Zhu; Ted H. Yu; Qingying Jia; Jinghua Guo; Liang Zhang; William A. Goddard; Yu Huang; Xiangfeng Duan
An activity lift for platinum Platinum is an excellent but expensive catalyst for the oxygen reduction reaction (ORR), which is critical for fuel cells. Alloying platinum with other metals can create shells of platinum on cores of less expensive metals, which increases its surface exposure, and compressive strain in the layer can also boost its activity (see the Perspective by Stephens et al.). Bu et al. produced nanoplates—platinum-lead cores covered with platinum shells—that were in tensile strain. These nanoplates had high and stable ORR activity, which theory suggests arises from the strain optimizing the platinum-oxygen bond strength. Li et al. optimized both the amount of surface-exposed platinum and the specific activity. They made nanowires with a nickel oxide core and a platinum shell, annealed them to the metal alloy, and then leached out the nickel to form a rough surface. The mass activity was about double the best reported values from previous studies. Science, this issue p. 1410, p. 1414; see also p. 1378 Improving the platinum (Pt) mass activity for the oxygen reduction reaction (ORR) requires optimization of both the specific activity and the electrochemically active surface area (ECSA). We found that solution-synthesized Pt/NiO core/shell nanowires can be converted into PtNi alloy nanowires through a thermal annealing process and then transformed into jagged Pt nanowires via electrochemical dealloying. The jagged nanowires exhibit an ECSA of 118 square meters per gram of Pt and a specific activity of 11.5 milliamperes per square centimeter for ORR (at 0.9 volts versus reversible hydrogen electrode), yielding a mass activity of 13.6 amperes per milligram of Pt, nearly double previously reported best values. Reactive molecular dynamics simulations suggest that highly stressed, undercoordinated rhombus-rich surface configurations of the jagged nanowires enhance ORR activity versus more relaxed surfaces.
Journal of the American Chemical Society | 2016
Hai Xiao; Tao Cheng; William A. Goddard; Ravishankar Sundararaman
Energy and environmental concerns demand development of more efficient and selective electrodes for electrochemical reduction of CO2 to form fuels and chemicals. Since Cu is the only pure metal exhibiting reduction to form hydrocarbon chemicals, we focus here on the Cu (111) electrode. We present a methodology for density functional theory calculations to obtain accurate onset electrochemical potentials with explicit constant electrochemical potential and pH effects using implicit solvation. We predict the atomistic mechanisms underlying electrochemical reduction of CO, finding that (1) at acidic pH, the C1 pathway proceeds through COH to CHOH to form CH4 while C2 (C3) pathways are kinetically blocked; (2) at neutral pH, the C1 and C2 (C3) pathways share the COH common intermediate, where the branch to C-C coupling is realized by a novel CO-COH pathway; and (3) at high pH, early C-C coupling through adsorbed CO dimerization dominates, suppressing the C1 pathways by kinetics, thereby boosting selectivity for multi-carbon products.
Journal of the American Chemical Society | 2016
Tao Cheng; Hai Xiao; William A. Goddard
Copper is the only elemental metal that reduces a significant fraction of CO2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions is not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or to carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out QM calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2 reduction reaction conditions) to examine the initial reaction pathways to form CO and formate (HCOO-) from CO2 through free energy calculations at 298 K and pH 7. We find that CO formation proceeds from physisorbed CO2 to chemisorbed CO2 (*CO2δ-), with a free energy barrier of ΔG⧧ = 0.43 eV, the rate-determining step (RDS). The subsequent barriers of protonating *CO2δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 and 0.30 eV, respectively. HCOO- formation proceeds through a very different pathway in which physisorbed CO2 reacts directly with a surface H* (along with electron transfer), leading to ΔG⧧ = 0.80 eV. Thus, the competition between CO formation and HCOO- formation occurs in the first electron-transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution, we need to control this first step of CO2 binding, which might involve controlling pH, alloying, or changing the structure at the nanoscale.
Journal of Physical Chemistry Letters | 2015
Tao Cheng; Hai Xiao; William A. Goddard
The great interest in the photochemical reduction from CO2 to fuels and chemicals has focused attention on Cu because of its unique ability to catalyze formation of carbon-containing fuels and chemicals. A particular goal is to learn how to modify the Cu catalysts to enhance the production selectivity while reducing the energy requirements (overpotential). To enable such developments, we report here the free-energy reaction barriers and mechanistic pathways on the Cu(100) surface, which produces only CH4 (not C2H4 or CH3OH) in acid (pH 0). We predict a threshold potential for CH4 formation of -0.52 V, which compares well to experiments at low pH, -0.45 to -0.50 V. These quantum molecular dynamics simulations included ∼5 layers of explicit water at the water/electrode interface using enhanced sampling methodology to obtain the free energies. We find that that chemisorbed hydroxyl-methylene (CH-OH) is the key intermediate determining the selectivity for methane over methanol.
Journal of the American Chemical Society | 2017
Hai Xiao; Tao Cheng; William A. Goddard
Practical environmental and energy applications of the electrochemical reduction of CO2 to chemicals and fuels require far more efficient and selective electrocatalysts beyond the only working material Cu, but the wealth of experimental data on Cu can serve to validate any proposed mechanisms. To provide design guidelines, we use quantum mechanics to predict the detailed atomistic mechanisms responsible for C1 and C2 products on Cu. Thus, we report the pH dependent routes to the major products, methane and ethylene, and identify the key intermediates where branches to methanol, ketene, ethanol, acetylene, and ethane are kinetically blocked. We discovered that surface water on Cu plays a key role in the selectivity for hydrocarbon products over the oxygen-containing alcohol products by serving as a strong proton donor for electrochemical dehydration reductions. We suggest new experiments to validate our predicted mechanisms.
Journal of the American Chemical Society | 2014
Tao Cheng; Andres Jaramillo-Botero; William A. Goddard; Huai Sun
We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations in the reactive system to automatically identify the reactions appropriate to receive the bond boost. We refer to this as adaptive Accelerated ReaxFF Reactive Dynamics or aARRDyn. To validate the aARRDyn methodology, we determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate that the kinetics and reaction mechanisms (that is the detailed sequences of reactive intermediates and their subsequent transformation to others) for H2 oxidation obtained from aARRDyn agrees well with the brute force reactive molecular dynamics (BF-RMD) at 2498 K. Using aARRDyn, we then extend our simulations to the whole range of combustion temperatures from ignition (798 K) to flame temperature (2998K), and demonstrate that, over this full temperature range, the reaction rates predicted by aARRDyn agree well with the BF-RMD values, extrapolated to lower temperatures. For the aARRDyn simulation at 798 K we find that the time period for half the H2 to form H2O product is ∼538 s, whereas the computational cost was just 1289 ps, a speed increase of ∼0.42 trillion (10(12)) over BF-RMD. In carrying out these RMD simulations we found that the ReaxFF-COH2008 version of the ReaxFF force field was not accurate for such intermediates as H3O. Consequently we reoptimized the fit to a quantum mechanics (QM) level, leading to the ReaxFF-OH2014 force field that was used in the simulations.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Tao Cheng; Hai Xiao; William A. Goddard
Significance Converting CO2 to fuels is of great interest nowadays. Copper (Cu) is the only metal that produces hydrocarbon products, making it of interest for learning the reaction mechanisms underlying the selectivity and activity of Cu catalysts. In this report, we examine the reaction mechanism of CO reduction on Cu(100) at pH 7 including explicitly the aqueous solvent with ab initio molecular metadynamics simulations (AIMμD) free-energy calculations, which we find to explain all experimental observations. We expect that this understanding will suggest how to modify the Cu catalyst or replace it with a new material to enhance production of just a single such product while reducing the energy requirements (overpotential). A critical step toward the rational design of new catalysts that achieve selective and efficient reduction of CO2 to specific hydrocarbons and oxygenates is to determine the detailed reaction mechanism including kinetics and product selectivity as a function of pH and applied potential for known systems. To accomplish this, we apply ab initio molecular metadynamics simulations (AIMμD) for the water/Cu(100) system with five layers of the explicit solvent under a potential of −0.59 V [reversible hydrogen electrode (RHE)] at pH 7 and compare with experiment. From these free-energy calculations, we determined the kinetics and pathways for major products (ethylene and methane) and minor products (ethanol, glyoxal, glycolaldehyde, ethylene glycol, acetaldehyde, ethane, and methanol). For an applied potential (U) greater than −0.6 V (RHE) ethylene, the major product, is produced via the Eley–Rideal (ER) mechanism using H2O + e–. The rate-determining step (RDS) is C–C coupling of two CO, with ΔG‡ = 0.69 eV. For an applied potential less than −0.60 V (RHE), the rate of ethylene formation decreases, mainly due to the loss of CO surface sites, which are replaced by H*. The reappearance of C2H4 along with CH4 at U less than −0.85 V arises from *CHO formation produced via an ER process of H* with nonadsorbed CO (a unique result). This *CHO is the common intermediate for the formation of both CH4 and C2H4. These results suggest that, to obtain hydrocarbon products selectively and efficiency at pH 7, we need to increase the CO concentration by changing the solvent or alloying the surface.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Hyung Mo Jeong; Kyung Min Choi; Tao Cheng; Dong Ki Lee; Renjia Zhou; Il Woo Ock; Delia J. Milliron; William A. Goddard; Jeung Ku Kang
Significance The combined study of experiments and molecular dynamics simulations demonstrates that metal oxide nanocrystals on graphene can be rescaled into atomic clusters. It is notable that the capacitance of 3,023 F per the mass of NiO, matching the measured capacitance of 2,231 per the total electrode mass, exceeds the theoretical gravimetric capacitance of 2,618 F available via ion-to-atom redox reactions. This approach thus provides a new pathway to realize full capacitance via ion-to-atom Faradaic redox reactions. Furthermore, assembly with a rescaled metal oxide positive electrode shows that further development of high-capacity negative counter electrode materials can pave a new route to address challenging energy storage issues. Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni2+ of the nanocrystal changes during lithiation–delithiation through Ni0 and back to Ni2+. These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Marco Favaro; Hai Xiao; Tao Cheng; William A. Goddard; Junko Yano; Ethan J. Crumlin
Significance Combining ambient pressure X-ray photoelectron spectroscopy experiments and quantum mechanical density functional theory calculations, this work reveals the essential first step for activating CO2 on a Cu surface, in particular, highlighting the importance of copper suboxide and the critical role of water. These findings provide the quintessential information needed to guide the future design of improved catalysts. A national priority is to convert CO2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO2 in the presence of water as the first step toward CO2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.
Journal of the American Chemical Society | 2017
Kun Sun; Tao Cheng; Lina Wu; Yongfeng Hu; Jigang Zhou; Aimee Maclennan; Zhaohua Jiang; Yunzhi Gao; William A. Goddard; Zhijiang Wang
Wide application of carbon dioxide (CO2) electrochemical energy storage requires catalysts with high mass activity. Alloy catalysts can achieve superior performance to single metals while reducing the cost by finely tuning the composition and morphology. We used in silico quantum mechanics rapid screening to identify Au-Fe as a candidate improving CO2 reduction and then synthesized and tested it experimentally. The synthesized Au-Fe alloy catalyst evolves quickly into a stable Au-Fe core-shell nanoparticle (AuFe-CSNP) after leaching out surface Fe. This AuFe-CSNP exhibits exclusive CO selectivity, long-term stability, nearly a 100-fold increase in mass activity toward CO2 reduction compared with Au NP, and 0.2 V lower in overpotential. Calculations show that surface defects due to Fe leaching contribute significantly to decrease the overpotential.