Tao Lin Sun
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tao Lin Sun.
Nature Materials | 2013
Tao Lin Sun; Takayuki Kurokawa; Shinya Kuroda; Abu Bin Ihsan; Taigo Akasaki; Koshiro Sato; Md. Anamul Haque; Tasuku Nakajima; Jian Ping Gong
Hydrogels attract great attention as biomaterials as a result of their soft and wet nature, similar to that of biological tissues. Recent inventions of several tough hydrogels show their potential as structural biomaterials, such as cartilage. Any given application, however, requires a combination of mechanical properties including stiffness, strength, toughness, damping, fatigue resistance and self-healing, along with biocompatibility. This combination is rarely realized. Here, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties. The randomness makes ionic bonds of a wide distribution of strength. The strong bonds serve as permanent crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. These physical hydrogels of supramolecular structure can be tuned to change multiple mechanical properties over wide ranges by using diverse ionic combinations. This polyampholyte approach is synthetically simple and dramatically increases the choice of tough hydrogels for applications.
Advanced Materials | 2015
Feng Luo; Tao Lin Sun; Tasuku Nakajima; Takayuki Kurokawa; Yu Zhao; Koshiro Sato; Abu Bin Ihsan; Xufeng Li; Honglei Guo; Jian Ping Gong
A series of tough polyion complex hydrogels is synthesized by sequential homopolymerization of cationic and anionic monomers. Owing to the reversible interpolymer ionic bonding, the materials are self-healable under ambient conditions with the aid of saline solution. Furthermore, self-glued bulk hydrogels can be built from their microgels, which is promising for 3D/4D printing and the additive manufacturing of hydrogels.
Advanced Materials | 2016
Hui Jie Zhang; Tao Lin Sun; Ao Kai Zhang; Yumihiko Ikura; Tasuku Nakajima; Takayuki Nonoyama; Takayuki Kurokawa; Osamu Ito; Hiroyuki Ishitobi; Jian Ping Gong
A series of physical double-network hydrogels is synthesized based on an amphiphilic triblock copolymer. The gel, which contains strong hydrophobic domains and sacrificial dynamic bonds of hydrogen bonds, is stiff and tough, and even stiffens in concentrated saline solution. Furthermore, due to its supramolecular structure, the gel features improved self-healing and self-recovery abilities.
Journal of Materials Chemistry B | 2013
Abu Bin Ihsan; Tao Lin Sun; Shinya Kuroda; Md. Anamul Haque; Takayuki Kurokawa; Tasuku Nakajima; Jian Ping Gong
Our recent study has revealed that neutral polyampholytes form tough physical hydrogels above a critical concentration Cm,c by forming ionic bonds of wide strength distribution. In this work, we systematically investigate the behavior of a polyampholyte system, poly(NaSS-co-DMAEA-Q), randomly copolymerized from oppositely charged monomers, sodium p-styrenesulfonate (NaSS) and acryloyloxethyltrimethylammonium chloride (DMAEA-Q) without and with a slight chemical cross-linking. A phase diagram of formulation has been constructed in the space of monomer concentration Cm and cross-linker density CMBAA. Three phases are observed for the as-synthesized samples: homogeneous solution at dilute Cm, phase separation at semi-dilute Cm, and homogenous gel at concentrated Cm. Above a critical Cm,c, the polyampholyte forms a supramolecular hydrogel with high toughness by dialysis of the mobile counter-ions, which substantially stabilizes both the intra- and inter chain ionic bonds. The presence of the chemical cross-linker (CMBAA > 0) brings about a shift of the tough gel phase to lower Cm,c. The tough polyampholyte gel, containing ∼50 wt% water, is highly stretchable and tough, exhibits fracture stress of σb∼ 0.4 MPa, fracture strain of εb∼ 30, and the work of extension at fracture Wext∼ 4 MJ m-3. These values are at the level of most tough soft materials. Owing to the reversible ion bonds, the poly(NaSS-co-DMAEA-Q) gels also exhibit complete self-recovery (100%) and high fatigue resistance upon repeated large deformation.
Advanced Materials | 2015
Chanchal Kumar Roy; Hong Lei Guo; Tao Lin Sun; Abu Bin Ihsan; Takayuki Kurokawa; Masakazu Takahata; Takayuki Nonoyama; Tasuku Nakajima; Jian Ping Gong
Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.
Soft Matter | 2015
Tao Lin Sun; Feng Luo; Takayuki Kurokawa; Sadia Nazneen Karobi; Tasuku Nakajima; Jian Ping Gong
Recently, charge balanced polyampholytes (PA) have been found to form tough and self-healing hydrogels. This class of physical hydrogels have a very high equilibrated polymer concentration in water (ca. 40-50 wt%), and are strongly viscoelastic. They are synthesized by random copolymerization of equal amounts of oppositely charged monomers at a high concentration, followed by a dialysis process of the small counter-ions and co-ions in water. The randomly distributed, opposite charges of the polymer form multiple ionic bonds of intra- and inter-chains with strength distribution. The strong inter-chain bonds, stabilized by topological entanglement, serve as quasi-permanent crosslinks, imparting the elasticity, while the weak bonds, both inter- and intra-chains, reversibly break and re-form to dissipate energy to toughen the materials. In this work, we intend to clarify the structure of the physical PA hydrogels from the tensile behaviors of the PA hydrogels. To clarify the structure and its formation mechanism, we analysed the tensile behaviors of the samples before and after the dialysis. We separated the quasi-permanent crosslinking of strong inter-chain bonds and the dynamic crosslinking of weak inter-chain bonds by using a combined model that consists of the Upper Convected Maxwell model and the Gent strain hardening model. The model fitting of the tensile behaviors extracts quantitative structural parameters, including the densities of weak and strong inter-chain bonds and the theoretical finite extensibility of polymer chains. Based on the fitting results of the combined model, the structural parameters of partial chains at a fixed observation time, including the Kuhn number, Kuhn length, and chain conformation, are determined using the scaling theory. The effects of monomer concentration at preparation, the effect of dialysis and the initial strain rate on the dynamic structure of PA gels, are discussed based on these analyses.
Materials horizons | 2015
Daniel R. King; Tao Lin Sun; Yiwan Huang; Takayuki Kurokawa; Takayuki Nonoyama; Alfred J. Crosby; Jian Ping Gong
Ligaments are unique wet biological tissues with high tensile modulus and fracture stress, combined with high bending flexibility. Developing synthetic materials with these properties is a significant challenge. Hydrogel composites made from high stiffness fabrics is a strategy to develop such unique materials; however, the ability to produce these materials has proven difficult, since common hydrogels swell in water and interact poorly with solid components, limiting the transfer of force from the fabric to the hydrogel matrix. In this work, for the first time, we successfully produce extraordinarily tough hydrogel composites by strategically selecting a recently developed tough hydrogel that de-swells in water. The new composites, consisting of polyampholyte hydrogels and glass fiber woven fabrics, exhibit extremely high effective toughness (250 000 J m−2), high tear strength (∼65 N mm−1), high tensile modulus (606 MPa), and low bending modulus (4.7 MPa). Even though these composites are composed of water-containing, biocompatible materials, their mechanical properties are comparable to high toughness Kevlar/polyurethane blends and fiber-reinforced polymers. Importantly, the mechanical properties of these composites greatly outperform the properties of either individual component. A mechanism is proposed based on established fabric tearing theory, which will enable the development of a new generation of mechanically robust composites based on fabrics. These results will be important towards developing soft biological prosthetics, and more generally for commercial applications such as tear-resistant gloves and bulletproof vests.
Soft Matter | 2016
Kunpeng Cui; Tao Lin Sun; Takayuki Kurokawa; Tasuku Nakajima; Takayuki Nonoyama; Liang Chen; Jian Ping Gong
Recently, we have developed a series of charge balanced polyampholyte (PA) physical hydrogels by random copolymerization in water, which show extraordinarily high toughness, self-healing ability and viscoelasticity. The excellent performance of PA hydrogels is ascribed to dynamic ionic bond formation through inter- and intra-chain interactions. The randomness results in ionic bonds of wide strength distribution, the strong bonds, which serve as permanent crosslinking, imparting the elasticity, while the weak bonds reversibly break and re-form, dissipating energy. In this work, we developed a simple physical method, called a pre-stretching method, to promote the performance of PA hydrogels. By imposing a pre-stretching on the sample in the as-prepared state, ion complexation during dialysis is prominently accelerated and the final performance is largely promoted. Further analysis suggests that the strong bond formation induced by pre-stretching is responsible for the change in final performance. Pre-stretching decreases the entropy of the system and increases the chain alignment, resulting in an increased possibility for strong bond formation.
Advanced Materials | 2018
Ping Rao; Tao Lin Sun; Liang Chen; Riku Takahashi; Gento Shinohara; Hui Guo; Daniel R. King; Takayuki Kurokawa; Jian Ping Gong
Hydrogels have promising applications in diverse areas, especially wet environments including tissue engineering, wound dressing, biomedical devices, and underwater soft robotics. Despite strong demands in such applications and great progress in irreversible bonding of robust hydrogels to diverse synthetic and biological surfaces, tough hydrogels with fast, strong, and reversible underwater adhesion are still not available. Herein, a strategy to develop hydrogels demonstrating such characteristics by combining macroscale surface engineering and nanoscale dynamic bonds is proposed. Based on this strategy, excellent underwater adhesion performance of tough hydrogels with dynamic ionic and hydrogen bonds, on diverse substrates, including hard glasses, soft hydrogels, and biological tissues is obtained. The proposed strategy can be generalized to develop other soft materials with underwater adhesion.
Polymer Science Series C | 2017
Tao Lin Sun; Kunpeng Cui; Jian Ping Gong
This article reviews the recently developed tough, self-recovery, and self-healing polyampholyte hydrogels. Polyampholyte hydrogels are synthesized using one-step radical copolymerization of cationic and anionic monomers with equal charges at high monomer concentration. The random copolymerization process makes the ionic monomers randomly distributing along the backbones, resulting in the formation of ionic bonds with a wide strength distribution via inter and intra chain complexation in the polymer network, weak bond and strong bonds. The strong bonds serve as permanent cross-linking, integrating the hydrogels to impart the elastic behavior, while the weak bonds can break upon the loading, dissipating energy to give the toughness, and re-form again after unloading to enable the self-recovery behavior. Accordingly, polyampholyte hydrogels have condensed polymers in water (ca 40−50 wt %). They are strongly viscoelastic and have a high toughness (fracture energy of 4000 J/m2), a wide range of tuning modulus (0.01 to 8 MPa), 100% self-recovery, and a high self-healing efficiency after cutting.