Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tapan Bhattacharyya is active.

Publication


Featured researches published by Tapan Bhattacharyya.


Nature | 2011

Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis

Yukiji Takeda; Sandra Costa; Estelle Delamarre; Carmen Roncal; Rodrigo Leite de Oliveira; Mario Leonardo Squadrito; Veronica Finisguerra; Sofie Deschoemaeker; Françoise Bruyère; Mathias Wenes; Alexander Hamm; Jens Serneels; Julie Magat; Tapan Bhattacharyya; Andrey Anisimov; Bénédicte F. Jordan; Kari Alitalo; Patrick H. Maxwell; Bernard Gallez; Zhen W. Zhuang; Yoshihiko Saito; Michael Simons; Michele De Palma; Massimiliano Mazzone

PHD2 serves as an oxygen sensor that rescues blood supply by regulating vessel formation and shape in case of oxygen shortage. However, it is unknown whether PHD2 can influence arteriogenesis. Here we studied the role of PHD2 in collateral artery growth by using hindlimb ischaemia as a model, a process that compensates for the lack of blood flow in case of major arterial occlusion. We show that Phd2 (also known as Egln1) haplodeficient (Phd2+/−) mice displayed preformed collateral arteries that preserved limb perfusion and prevented tissue necrosis in ischaemia. Improved arteriogenesis in Phd2+/− mice was due to an expansion of tissue-resident, M2-like macrophages and their increased release of arteriogenic factors, leading to enhanced smooth muscle cell (SMC) recruitment and growth. Both chronic and acute deletion of one Phd2 allele in macrophages was sufficient to skew their polarization towards a pro-arteriogenic phenotype. Mechanistically, collateral vessel preconditioning relied on the activation of canonical NF-κB pathway in Phd2+/− macrophages. These results unravel how PHD2 regulates arteriogenesis and artery homeostasis by controlling a specific differentiation state in macrophages and suggest new treatment options for ischaemic disorders.


PLOS Neglected Tropical Diseases | 2011

Multilocus Sequence Typing (MLST) for Lineage Assignment and High Resolution Diversity Studies in Trypanosoma cruzi

Matthew Yeo; Isabel Mauricio; Louisa A. Messenger; Michael D. Lewis; Martin S. Llewellyn; Nidia Acosta; Tapan Bhattacharyya; Patricio Diosque; Hernán J. Carrasco; Michael A. Miles

Background Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. Methodology/Principal Findings We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. Conclusions/Significance We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.


PLOS Neglected Tropical Diseases | 2012

Multiple Mitochondrial Introgression Events and Heteroplasmy in Trypanosoma cruzi Revealed by Maxicircle MLST and Next Generation Sequencing

Louisa A. Messenger; Martin S. Llewellyn; Tapan Bhattacharyya; Oscar Franzén; Michael D. Lewis; Juan David Ramírez; Hernán J. Carrasco; Björn Andersson; Michael A. Miles

Background Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. Methodology/Principal Findings To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. Conclusions/Significance mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi.


International Journal for Parasitology | 2010

Analysis of molecular diversity of the Trypanosoma cruzi trypomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology

Tapan Bhattacharyya; Jessica Brooks; Matthew Yeo; Hernán J. Carrasco; Michael D. Lewis; Martin S. Llewellyn; Michael A. Miles

Chagas disease, marked by life-long chronic infection with Trypanosoma cruzi, remains a major parasitic disease in Latin America. Genetically heterogeneous, T. cruzi is divided into six discrete typing units (DTUs), most recently grouped as TcI-VI. The trypomastigote small surface antigen (TSSA) of T. cruzi has been described as the only known serological marker to identify infection by TcII-VI, as distinct from TcI. Here, by comparative analysis of a cohort of 25 reference strains representing all the known DTUs, we show that TSSA intra-specific diversity is greater than previously reported. Furthermore, TcIII and IV TSSA PCR products are, contrary to expectation, both digested by PvuII, revealing a more nuanced genotyping pattern. Amino acid sequence diversity reveals that the TSSA epitope considered to be serologically characteristic of TcII-VI is restricted to TcII, V and VI, but not of III or IV, and that the diagnostic peptide described as TcI-specific shares key features with TcIII and IV. Notably, TSSA sequences inferred greater phylogenetic affinities of TcIII and IV to TcI than to TcII, V or VI. A high ratio of non-synonymous to synonymous nucleotide substitutions (omega=1.233) indicates that the TSSA gene has been under positive selection pressure. The demonstration of lineage-specific epitopes within TcII-VI has implications for sero-epidemiological studies of Chagas disease based on this antigen.


PLOS Neglected Tropical Diseases | 2013

Comparison of Visceral Leishmaniasis Diagnostic Antigens in African and Asian Leishmania donovani Reveals Extensive Diversity and Region-specific Polymorphisms.

Tapan Bhattacharyya; Marleen Boelaert; Michael A. Miles

Background Visceral leishmaniasis (VL), caused by infection with Leishmania donovani complex, remains a major public health problem in endemic regions of South Asia, East Africa, and Brazil. If untreated, symptomatic VL is usually fatal. Rapid field diagnosis relies principally on demonstration of anti-Leishmania antibodies in clinically suspect cases. The rK39 immunochromatographic rapid diagnostic test (RDT) is based on rK39, encoded by a fragment of a kinesin-related gene derived from a Brazilian L. chagasi, now recognised as L. infantum, originating from Europe. Despite its reliability in South Asia, the rK39 test is reported to have lower sensitivity in East Africa. A reason for this differential response may reside in the molecular diversity of the rK39 homologous sequences among East African L. donovani strains. Methodology/Principal Findings Coding sequences of rK39 homologues from East African L. donovani strains were amplified from genomic DNA, analysed for diversity from the rK39 sequence, and compared to South Asian sequences. East African sequences were revealed to display significant diversity from rK39. Most coding changes in the 5′ half of repeats were non-conservative, with multiple substitutions involving charge changes, whereas amino acid substitutions in the 3′ half of repeats were conservative. Specific polymorphisms were found between South Asian and East African strains. Diversity of HASPB1 and HASPB2 gene repeat sequences, used to flank sequences of a kinesin homologue in the synthetic antigen rK28 designed to reduce variable RDT performance, was also investigated. Non-canonical combination repeat arrangements were revealed for HASPB1 and HASPB2 gene products in strains producing unpredicted size amplicons. Conclusions/Significance We demonstrate that there is extensive kinesin genetic diversity among strains in East Africa and between East Africa and South Asia, with ample scope for influencing performance of rK39 diagnostic assays. We also show the importance of targeted comparative genomics in guiding optimisation of recombinant/synthetic diagnostic antigens.


PLOS Neglected Tropical Diseases | 2014

Development of Peptide-Based Lineage-Specific Serology for Chronic Chagas Disease: Geographical and Clinical Distribution of Epitope Recognition

Tapan Bhattacharyya; Andrew K. I. Falconar; Alejandro O. Luquetti; Jaime A. Costales; Mario J. Grijalva; Michael D. Lewis; Louisa A. Messenger; Trang T. Tran; Juan David Ramírez; Felipe Guhl; Hernán J. Carrasco; Patricio Diosque; Lineth Garcia; Sergey V. Litvinov; Michael A. Miles

Background Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individuals history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. Methodology/Principal Findings We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. Conclusions/Significance These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages.


PLOS Neglected Tropical Diseases | 2014

IgG1 as a Potential Biomarker of Post-chemotherapeutic Relapse in Visceral Leishmaniasis, and Adaptation to a Rapid Diagnostic Test

Tapan Bhattacharyya; Armon Ayandeh; Andrew K. I. Falconar; Shyam Sundar; Sayda El-Safi; Marissa A. Gripenberg; Duncan E. Bowes; Caroline Thunissen; Om Prakash Singh; Rajiv Kumar; Osman Ahmed; Osama Eisa; Alfarazdeg A. Saad; Sara Silva Pereira; Marleen Boelaert; Pascal Mertens; Michael A. Miles

Background Visceral leishmaniasis (VL), caused by protozoa of the Leishmania donovani complex, is a widespread parasitic disease of great public health importance; without effective chemotherapy symptomatic VL is usually fatal. Distinction of asymptomatic carriage from progressive disease and the prediction of relapse following treatment are hampered by the lack of prognostic biomarkers for use at point of care. Methodology/Principal Findings All IgG subclass and IgG isotype antibody levels were determined using unpaired serum samples from Indian and Sudanese patients with differing clinical status of VL, which included pre-treatment active VL, post-treatment cured, post-treatment relapsed, and post kala-azar dermal leishmaniasis (PKDL), as well as seropositive (DAT and/or rK39) endemic healthy controls (EHCs) and seronegative EHCs. L. donovani antigen-specific IgG1 levels were significantly elevated in relapsed versus cured VL patients (p<0.0001). Using paired Indian VL sera, consistent with the known IgG1 half-life, IgG1 levels had not decreased significantly at day 30 after the start of treatment (p = 0.8304), but were dramatically decreased by 6 months compared to day 0 (p = 0.0032) or day 15 (p<0.0001) after start of treatment. Similarly, Sudanese sera taken soon after treatment did not show a significant change in the IgG1 levels (p = 0.3939). Two prototype lateral flow immunochromatographic rapid diagnostic tests (RDTs) were developed to detect IgG1 levels following VL treatment: more than 80% of the relapsed VL patients were IgG1 positive; at least 80% of the cured VL patients were IgG1 negative (p<0.0001). Conclusions/Significance Six months after treatment of active VL, elevated levels of specific IgG1 were associated with treatment failure and relapse, whereas no IgG1 or low levels were detected in cured VL patients. A lateral flow RDT was successfully developed to detect anti-Leishmania IgG1 as a potential biomarker of post-chemotherapeutic relapse.


PLOS Neglected Tropical Diseases | 2014

Significantly Lower Anti-Leishmania IgG Responses in Sudanese versus Indian Visceral Leishmaniasis

Tapan Bhattacharyya; Duncan E. Bowes; Sayda El-Safi; Shyam Sundar; Andrew K. I. Falconar; O. P. Singh; Rajiv Kumar; Osman Ahmed; Marleen Boelaert; Michael A. Miles

Background Visceral leishmaniasis (VL), a widely distributed systemic disease caused by infection with the Leishmania donovani complex (L. donovani and L. infantum), is almost always fatal if symptomatic and untreated. A rapid point-of-care diagnostic test for anti-Leishmania antibodies, the rK39-immunochromatographic test (rK39-ICT), has high sensitivity and specificity in South Asia but is less sensitive in East Africa. One of the underlying reasons may be continent-specific molecular diversity in the rK39 antigen within the L. donovani complex. However, a second reason may be differences in specific IgG anti-Leishmania levels in patients from different geographical regions, either due to variable antigenicity or immunological response. Methodology/Principal Findings We determined IgG titres of Indian and Sudanese VL patients against whole cell lysates of Indian and Sudanese L. donovani strains. Indian VL patients had significantly higher IgG titres against both L. donovani strains compared to Sudanese VL patients (p<0.0001). Mean reciprocal log10 50% end-point titres (1/log10t50) were i) 3.80 and 3.88 for Indian plasma and ii) 2.13 and 2.09 for Sudanese plasma against Indian and Sudanese antigen respectively (p<0.0001). Overall, the Indian VL patients therefore showed a 46.8–61.7 -fold higher mean ELISA titre than the Sudanese VL patients. The higher IgG titres occurred in children (<16 years old) and adults of either sex from India (mean 1/log10t50: 3.60–4.15) versus Sudan (mean 1/log10t50: 1.88–2.54). The greatest difference in IgG responses was between male Indian and Sudanese VL patients of ≥ 16 years old (mean 1/log10t50: 4.15 versus 1.99 = 144-fold (p<0.0001). Conclusions/Significance Anti-Leishmania IgG responses among VL patients in Sudan were significantly lower than in India; this may be due to chronic malnutrition with Zn2+ deficiency, or variable antigenicity and capacity to generate IgG responses to Leishmania antigens. Such differential anti-Leishmania IgG levels may contribute to lower sensitivity of the rK39-ICT in East Africa.


Parasites & Vectors | 2015

Chagas disease reactivation in a heart transplant patient infected by domestic Trypanosoma cruzi discrete typing unit I (TcIDOM)

Jaime A. Costales; Camille N. Kotton; Andrea C. Zurita-Leal; Josselyn Garcia-Perez; Martin S. Llewellyn; Louisa A. Messenger; Tapan Bhattacharyya; Barbara A. Burleigh

BackgroundTrypanosoma cruzi, causative agent of Chagas disease, displays high intraspecific genetic diversity: six genetic lineages or discrete typing units (DTUs) are currently recognized, termed TcI through TcVI. Each DTU presents a particular distribution pattern across the Americas, and is loosely associated with different transmission cycles and hosts. Several DTUs are known to circulate in Central America. It has been previously suggested that TcI infection is benign and does not lead to chronic chagasic cardiomyopathy (CCC).FindingsIn this study, we genotyped T. cruzi parasites circulating in the blood and from explanted cardiac tissue of an El Salvadorian patient who developed reactivation Chagas disease while on immunosuppressive medications after undergoing heart transplant in the U.S. as treatment for end-stage CCC. Parasite typing was performed through molecular methods (restriction fragment length polymorphism of polymerase reaction chain amplified products, microsatellite typing, maxicircle sequence typing and low-stringency single primer PCR, [LSSP-PCR]) as well as lineage-specific serology. We show that the parasites infecting the patient belong to the TcI DTU exclusively. Our data indicate that the parasites isolated from the patient belong to a genotype frequently associated with human infection throughout the Americas (TcIDOM).ConclusionsOur results constitute compelling evidence in support of TcI DTU’s ability to cause end-stage CCC and help dispel any residual bias that infection with this lineage is benign, pointing to the need for increased surveillance for dissemination of this genotype in endemic regions, the USA and globally.


Acta Tropica | 2015

Prospects for T. cruzi lineage-specific serological surveillance of wild mammals.

Tapan Bhattacharyya; Emily A. Mills; Ana Maria Jansen; Michael A. Miles

Sequence diversity in the Trypanosoma cruzi small surface molecule TSSA has yielded antigens for serology to investigate the T. cruzi lineage-specific infection history of patients with Chagas disease. Synthetic peptides can be used as the lineage-specific antigens. Here we consider the rationale, feasibility and potential of applying peptide-based lineage-specific serology to naturally infected wild mammals. The commercial availability of appropriate secondary antibodies encourages this further development, for discovery of new reservoir host species and to reveal the wider ecological distribution of T. cruzi lineages, currently hindered by the need to recover live isolates or to attempt genotyping of DNA extracted from blood samples.

Collaboration


Dive into the Tapan Bhattacharyya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marleen Boelaert

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

Oscar Franzén

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajiv Kumar

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

Shyam Sundar

Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge