Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tapas Chandra Nag is active.

Publication


Featured researches published by Tapas Chandra Nag.


Journal of Ocular Pharmacology and Therapeutics | 2011

Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms.

Suresh Kumar Gupta; Binit Kumar; Tapas Chandra Nag; Shyam Sunder Agrawal; Renu Agrawal; Puneet Agrawal; Rohit Saxena; Sushma Srivastava

PURPOSE The purpose of this study was to evaluate the therapeutic potential of oral curcumin (1 g/kg body weight of rat) in the prevention and treatment of streptozotocin-induced diabetic retinopathy in Wistar albino rats. METHODS The treatment was carried out for a period of 16 weeks in diabetic rats and evaluated for hyperglycemic, antioxidant (superoxide dismutase, catalase, and glutathione), and inflammatory parameters (tumor necrosis factor-α, vascular endothelial growth factor). Rat fundus was observed weekly to see any visible changes in the retina, such as tortuosity and dilation of retinal vessels. Histological changes were evaluated by transmission electron microscopy. RESULTS Treatment with curcumin showed significant hypoglycemic activity compared with the diabetic group. Retinal glutathione levels were decreased by 1.5-fold, and antioxidant enzymes, superoxide dismutase and catalase, showed >2-fold decrease in activity in the diabetic group; on the other hand, curcumin positively modulated the antioxidant system. Proinflammatory cytokines, tumor necrosis factor-α and vascular endothelial growth factor, were elevated >2-fold in the diabetic retinae, but prevented by curcumin. Transmission electron microscopy showed degeneration of endothelial cell organelles and increase in capillary basement membrane thickness in diabetic retina, but curcumin prevented the structural degeneration and increase in capillary basement membrane thickness in the diabetic rat retinae. CONCLUSION Based on the above results, it may be concluded that curcumin may have potential benefits in the prevention of retinopathy in diabetic patients.


Microvascular Research | 2013

Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats.

Binit Kumar; Suresh Kumar Gupta; B.P. Srinivasan; Tapas Chandra Nag; Sushma Srivastava; Rohit Saxena; Kumar Abhiram Jha

The purpose of the study was to evaluate the effects of hesperetin (Hsp) on diabetes-induced retinal oxidative stress, neuroinflammation and apoptosis in rats. The Hsp treatment (100 mg/kg body weight) was carried for twenty four weeks in STZ-induced diabetic rats and evaluated for antioxidant (Superoxide dismutase; SOD, Catalase; CAT and glutathione; GSH) enzymes, inflammatory cytokines (TNF-α, IL-1β), caspase-3, glial fibrillary acidic protein (GFAP) and aquaporin-4(AQP4) expression. Histological changes were evaluated by light and transmission electron microscopic (LM and TEM) studies. Retinal GSH levels and anti-oxidant enzymes (SOD and CAT) activity were significantly decreased in diabetic group as compared to normal group. However, in Hsp-treated rats, retinal GSH levels were restored close to normal levels and positive modulation of anti-oxidant enzyme activity was observed. Diabetic retinae showed significantly increased expression of Pro-inflammatory cytokines (TNF-α and IL-1β) as compared to normal retinae. While Hsp-treated retinae showed significantly lower levels of cytokines as compared to diabetic retinae. Diabetic retinae showed increased caspase-3, GFAP and AQP4 expression. However, Hsp-treated retinae showed inhibitory effect on caspase-3, GFAP and AQP4 expression. LM images showed edematous Müller cell endfeet, and also degenerated photoreceptor layer; however, protective effect of Hsp was seen on Müller cell processes and photoreceptors. TEM study showed increased basement membrane (BM) thickness in diabetic retina, while relatively thin BM was recorded in Hsp-treated retina. It can be postulated that dietary flavanoids, like Hsp, can be effective for the prevention of diabetes induced neurovascular complications such as diabetic retinopathy.


Neuroscience | 1999

Developmental expression of calretinin immunoreactivity in the human retina and a comparison with two other EF-hand calcium-binding proteins

Tapas Chandra Nag; Shashi Wadhwa

This paper reports the localization pattern of calretinin, a calcium-binding protein, in the human retina during development, as studied by immunohistochemistry. A comparison is made of the cellular distribution of calretinin with two other calcium-binding proteins, calbindin and parvalbumin, recently reported by us in the human retina, and by parallel labeling with both antisera in the same tissues. At 11-12 weeks of gestation, calretinin immunoreactivity was expressed in many prospective ganglion cells of the central inner neuroblastic zone. At 16-17 weeks of gestation, the immunoreactivity was localized in the ganglion cell layer, inner plexiform layer, and in most differentiated amacrine, horizontal and cone cells located in the central (1-2 mm temporal from optic disc) to midperipheral parts of the retina. By midgestation (20-21 weeks), calretinin immunoreactivity was strongly developed in the cone photoreceptors. Parallel labeling with calbindin and parvalbumin antisera revealed that the calretinin-positive horizontal cells were somewhat smaller and less frequent and less intense than the calbindin- and parvalbumin-positive counterparts, at 16-21 weeks of gestation. No horizontal cells were calretinin immunopositive in the postnatal (four-month-old infant) and adult retinas examined. Also, at both stages, a few bipolar and cone cells were weakly immunoreactive. These observations suggest a critical role for calretinin in the development and maturation of a select class of horizontal cells. The widespread expression of immunoreactivity in the early ganglion cells indicates that calretinin may be involved in their differentiation. The weak immunoreactivity pattern noted in the adult photoreceptor and bipolar cells, and an apparent lack of immunoreactivity in the mature horizontal cells, tends to indicate that, unlike calbindin and parvalbumin, calretinin plays little role in the transport and physiological buffering of Ca2+ in these neurons of the human retina. It appears, however, that calretinin is predominantly involved in both processes in amacrine cells.


Journal of Biosciences | 2003

Expression of the neurotrophin receptors Trk A and Trk B in adult human astrocytoma and glioblastoma

Shashi Wadhwa; Tapas Chandra Nag; Anupam Jindal; Rahul Kushwaha; Ashok Kumar Mahapatra; Chitra Sarkar

Neurotrophins and their receptors of the Trk family play a critical role in proliferation, differentiation and survival of the developing neurons. There are reports on their expression in neoplasms too, namely, the primitive neuroectodermal tumours of childhood, and in adult astrocytic gliomas. The involvement of Trk receptors in tumour pathogenesis, if any, is not known. With this end in view, the present study has examined 10 tumour biopsy samples (identified as astrocytoma, pilocytic astrocytoma and glioblastoma) and peritumoral brain tissue of adult patients, for the presence of Trk A and Trk B receptors, by immunohistochemistry. The nature of the tumour samples was also confirmed by their immunoreactivity (IR) to glial fibrillary acidic protein. In the peritumoral brain tissue, only neurons showed IR for Trk A and Trk B. On the contrary, in the tumour sections, the IR to both receptors was localized in the vast majority of glia and capillary endothelium. There was an obvious pattern of IR in these gliomas: high levels of IR were present in the low-grade (type I and II) astrocytoma; whereas in the advanced malignant forms (WHO grade IV giant cell glioblastoma and glio-blastoma multiforme) the IR was very weak. These findings suggest that Trk A and Trk B are involved in tumour pathogenesis, especially in the early stage, and may respond to signals that elicit glial proliferation, and thus contribute to progression towards malignancy.


Virchows Archiv | 2012

Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective

Prasenjit Das; Pooja Goswami; Tapash K. Das; Tapas Chandra Nag; Vishnubhatla Sreenivas; Vineet Ahuja; Subrat Kumar Panda; Siddhartha Datta Gupta; Govind K. Makharia

We intended to see the pattern of TJ protein expression along with ultrastructural changes in colonic biopsies from patients with Crohn’s disease (CD), ulcerative colitis (UC), and tuberculosis (cTB). Colonic biopsies from 11 patients with active CD and ten patients each with active UC and untreated cTB were taken along with biopsies from six patients with irritable bowel syndrome as controls. These were evaluated for expression pattern of key TJ proteins which included claudin-2 as TJ pore-forming protein, claudin-4 as pore-sealing protein, ZO-1 as scaffold protein, and occludin as TJ protein related to cell migration and polarity. Claudin-2 expression was upregulated along the whole length of intercellular junction (ICJ) in biopsies from patients with active CD and UC in comparison to the biopsies from cTB patients and controls, where its expression was limited to the uppermost part of ICJ. There was reduced expression of ZO-1 in UC, CD, and cTB. On transmission electron microscopic examination, the pentalaminar structure of TJs was destroyed in patients with CD and UC but no significant change was seen in those with cTB and in controls. The expression of claudin-2 was distinctly different in active CD and UC in comparison to its expression pattern in patients with cTB and in controls. The redistribution of claudin-2 expression was in accordance with the TJ ultrastructural changes in patients with UC, CD, and cTB. Altered claudin-2 expression, along with destroyed TJs, may result in loss of selective permeability in patients with UC and CD.


Ophthalmic Research | 2012

Green Tea Prevents Hyperglycemia-Induced Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats

Binit Kumar; Suresh Kumar Gupta; Tapas Chandra Nag; Sushma Srivastava; Rohit Saxena

Purpose: Our objective was to investigate the effect of green tea (GT) on diabetes-induced retinal oxidative stress and proinflammatory parameters in rats. Methods: Treatment (200 mg/kg body weight) was carried out for a period of 16 weeks in streptozotocin-induced diabetic rats and was evaluated for hypoglycemic, antioxidant [reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT)] and anti-inflammatory [tumor necrosis factor (TNF) α, vascular endothelial growth factor (VEGF)] activity. Histological changes were evaluated by transmission electron microscopy. Results: Retinal GSH levels were 1.5-fold lower in diabetic rats as compared to normal rats (p < 0.05). However, in GT-treated rats, retinal GSH levels were restored close to those of the normal group. The antioxidant enzymes SOD and CAT showed a more than 2-fold decrease in activity in diabetic retinae as compared to normal retinae (p < 0.05). Both SOD and CAT enzymatic activities were restored close to normal in the GT-treated group. Expression of proinflammatory parameters (TNF-α and VEGF) was significantly inhibited in GT-treated retinae as compared to diabetic retinae (p < 0.05). Moreover, GT treatment prevented retinal capillary basement membrane thickness. Conclusion: The beneficial effects of GT suggest its potential role in the prevention and treatment of diabetic retinopathy in human subjects.


Micron | 2012

Ultrastructure of the human retina in aging and various pathological states

Tapas Chandra Nag; Shashi Wadhwa

Vision is hampered in aging and diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy and glaucoma. This review collates the fine structural alterations of the human retina in aging and various pathological situations and their links to the disease pathogenesis. It transpires that most changes occur at the level of the retinal pigment epithelium -Bruchs membrane and the photoreceptor layer, causing visual problems to the sufferers. These changes include loss of normal, essential features of these cells and their gradual disappearance. It is important to understand in depth the selective vulnerability of this retinal region to alterations in aging and diseases. Evidence indicates that some of these changes may be mediated by the effects of oxidative stress, inflammation, and chronic light exposure. There are changes also in the inner retinal layers, wherein hypertension, auto-immunity, hypoxia and ischemia could play significant roles in disease pathogenesis. Results of extensive research utilizing animal models have broadened our idea about photoreceptor pathology. However, equivalent knowledge on various changes in aging human retina and in dystrophies that affect the macula is not complete. Since cone photoreceptor and ganglion cell death are a potential problem, it is imperative to know about the basic facts on how they are affected and the mechanisms involved in their death. Thus, prevention of cone and ganglion cell loss should be the target of choice. This review also highlights the significant role played by electron microscopy in understanding such ultrastructural changes and future strategies utilizing it and other techniques to fill some of the existing lacunae and advance our knowledge.


Journal of Biosciences | 2001

Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina

Tapas Chandra Nag; Shashi Wadhwa

Synaptophysin and syntaxin-1 are membrane proteins that associate with synaptic vesicles and presynaptic active zones at nerve endings, respectively. The former is known to be a good marker of synaptogenesis; this aspect, however, is not clear with syntaxin-1. In this study, the expression of both proteins was examined in the developing human retina and compared with their distribution in postnatal to adult retinas, by immunohistochemistry. In the inner plexiform layer, both were expressed simultaneously at 11–12 weeks of gestation, when synaptogenesis reportedly begins in the central retina. In the outer plexiform layer, however, the immunoreactivities were prominent by 16 weeks of gestation. Their expression in both plexiform layers followed a centre-to-periphery gradient. The immunoreactivities for both proteins were found in the immature photoreceptor, amacrine and ganglion cells; however, synaptophysin was differentially localized in bipolar cells and their axons, and syntaxin was present in some horizontal cells. In postnatal-to-adult retinas, synaptophysin immunoreactivity was prominent in photoreceptor terminals lying in the outer plexiform layer; on the contrary, syntaxin-1 was present in a thin immunoreactive band in this layer. In the inner plexiform layer, however, both were homogeneously distributed. Our study suggests that (i) syntaxin-1 appears in parallel with synapse formation; (ii) synaptogenesis in the human retina might follow a centre-to-periphery gradient; (iii) syntaxin-1 is likely to be absent from ribbon synapses of the outer plexiform layer, but may occur at presynaptic terminals of photoreceptor and horizontal cells, as is apparent from its localization in these cells, which is hitherto unreported for any vertebrate retina.


Diabetes, Obesity and Metabolism | 2011

Telmisartan, a dual ARB/partial PPAR-γ agonist, protects myocardium from ischaemic reperfusion injury in experimental diabetes.

Sameer N. Goyal; Saurabh Bharti; Jagriti Bhatia; Tapas Chandra Nag; Ruma Ray; Dharamvir Singh Arya

Aim: Apart from its angiotensin receptor blocker (ARB) activity, telmisartan is also a partial agonist of peroxisome proliferator‐activated receptor gamma (PPAR‐γ). Therefore, we assessed whether telmisartan treatment attenuates myocardial ischaemia/reperfusion (I/R) injury in diabetic rats through PPAR‐γ pathway.


Developmental Brain Research | 1999

Neurotrophin receptors (Trk A, Trk B, and Trk C) in the developing and adult human retina

Tapas Chandra Nag; Shashi Wadhwa

In this study, the ontogeny and distribution patterns of three neurotrophin receptors (Trk A, Trk B, and Trk C) were examined in the human retinas. Immunohistochemistry was performed on sections of retina and optic nerve from fetuses (11-24 weeks of gestation, wg), one infant (4-month-old) and two adult (35- and 65-years-old) subjects. At 11 wg, Trk A was expressed in the nerve fiber and inner plexiform layers, while Trk B and Trk C were expressed in many neuroblastic cells. By 16-17 wg, the photoreceptors showed immunoreactivity for all three receptors. The ganglion cell layer and amacrine cells were conspicuously immunoreactive for Trk A and Trk C, but labeled diffusely for Trk B. The horizontal cells were labeled for Trk A and Trk B. The pattern was same in the retinas at midgestation (20-21 wg). Shortly after this period, there was an apparent decrease in receptor immunoreactivity in the fetal retinas. In the infant retina, Trk A immunoreactivity was absent from horizontal cells. The photoreceptors were immunopositive for Trk B and Trk C, in infant and adult retinas. In the adults, few cells of the ganglion cell layer and inner nuclear layer were clearly labeled for Trk A and Trk C, and diffusely for Trk B. The glial cells of the retina and optic nerve immunoreacted for Trk A only, right from fetal 16 wg. The early expression of Trk B and Trk C on neuroblastic cells suggests that both play a role in cell proliferation. The developmental distribution pattern of Trk A, on the other hand, provides evidence for its involvement in differentiation of the inner plexiform layer, horizontal cells and neuroglia. The results strongly suggest that photoreceptor development is mediated by Trk receptors. The novel localization of Trk B and Trk C on adult photoreceptors points to a possible therapeutic potential for BDNF and NT-3, respectively, in photoreceptor diseases.

Collaboration


Dive into the Tapas Chandra Nag's collaboration.

Top Co-Authors

Avatar

Shashi Wadhwa

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dharamvir Singh Arya

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ruma Ray

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Tara Sankar Roy

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jagriti Bhatia

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Suresh Kumar Gupta

Delhi Institute of Pharmaceutical Sciences and Research

View shared research outputs
Top Co-Authors

Avatar

Sushma Srivastava

Delhi Institute of Pharmaceutical Sciences and Research

View shared research outputs
Top Co-Authors

Avatar

Rohit Saxena

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Binit Kumar

Delhi Institute of Pharmaceutical Sciences and Research

View shared research outputs
Top Co-Authors

Avatar

Santosh Kumari

Indian Agricultural Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge