Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tapas K. Kundu is active.

Publication


Featured researches published by Tapas K. Kundu.


Journal of Biological Chemistry | 2004

Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription.

Karanam Balasubramanyam; Radhika A. Varier; Mohammed Altaf; Venkatesh Swaminathan; Nagadenahalli B. Siddappa; Udaykumar Ranga; Tapas K. Kundu

Acetylation of histones and non-histone proteins is an important post-translational modification involved in the regulation of gene expression in eukaryotes and all viral DNA that integrates into the human genome (e.g. the human immunodeficiency virus). Dysfunction of histone acetyltransferases (HATs) is often associated with the manifestation of several diseases. In this respect, HATs are the new potential targets for the design of therapeutics. In this study, we report that curcumin (diferuloylmethane), a major curcumanoid in the spice turmeric, is a specific inhibitor of the p300/CREB-binding protein (CBP) HAT activity but not of p300/CBP-associated factor, in vitro and in vivo. Furthermore, curcumin could also inhibit the p300-mediated acetylation of p53 in vivo. It specifically represses the p300/CBP HAT activity-dependent transcriptional activation from chromatin but not a DNA template. It is significant that curcumin could inhibit the acetylation of HIV-Tat protein in vitro by p300 as well as proliferation of the virus, as revealed by the repression in syncytia formation upon curcumin treatment in SupT1 cells. Thus, non-toxic curcumin, which targets p300/CBP, may serve as a lead compound in combinatorial HIV therapeutics.


Molecular Cell | 2000

HATs off: Selective Synthetic Inhibitors of the Histone Acetyltransferases p300 and PCAF

Ontario D. Lau; Tapas K. Kundu; Raymond E. Soccio; Slimane Ait-Si-Ali; Ehab M. Khalil; Alex Vassilev; Alan P. Wolffe; Yoshihiro Nakatani; Robert G. Roeder; Philip A. Cole

Histone acetyltransferases (HATs) play important roles in the regulation of gene expression. In this report, we describe the design, synthesis, and application of peptide CoA conjugates as selective HAT inhibitors for the transcriptional coactivators p300 and PCAF. Two inhibitors (Lys-CoA for p300 and H3-CoA-20 for PCAF) were found to be potent (IC(50) approximately = 0.5 microM) and selective (approximately 200-fold) in blocking p300 and PCAF HAT activities. These inhibitors were used to probe enzymatic and transcriptional features of HAT function in several assay systems. These compounds should be broadly useful as biological tools for evaluating the roles of HATs in transcriptional studies and may serve as lead agents for the development of novel antineoplastic therapeutics.


Molecular and Cellular Biology | 2001

Human STAGA Complex Is a Chromatin-Acetylating Transcription Coactivator That Interacts with Pre-mRNA Splicing and DNA Damage-Binding Factors In Vivo

Ernest Martinez; Vikas B. Palhan; Agneta Tjernberg; Elena S. Lymar; Armin M. Gamper; Tapas K. Kundu; Brian T. Chait; Robert G. Roeder

ABSTRACT GCN5 is a histone acetyltransferase (HAT) originally identified inSaccharomyces cerevisiae and required for transcription of specific genes within chromatin as part of the SAGA (SPT-ADA-GCN5 acetylase) coactivator complex. Mammalian cells have two distinct GCN5 homologs (PCAF and GCN5L) that have been found in three different SAGA-like complexes (PCAF complex, TFTC [TATA-binding-protein-free TAFII-containing complex], and STAGA [SPT3-TAFII31-GCN5L acetylase]). The composition and roles of these mammalian HAT complexes are still poorly characterized. Here, we present the purification and characterization of the human STAGA complex. We show that STAGA contains homologs of most yeast SAGA components, including two novel human proteins with histone-like folds and sequence relationships to yeast SPT7 and ADA1. Furthermore, we demonstrate that STAGA has acetyl coenzyme A-dependent transcriptional coactivator functions from a chromatin-assembled template in vitro and associates in HeLa cells with spliceosome-associated protein 130 (SAP130) and DDB1, two structurally related proteins. SAP130 is a component of the splicing factor SF3b that associates with U2 snRNP and is recruited to prespliceosomal complexes. DDB1 (p127) is a UV-damaged-DNA-binding protein that is involved, as part of a complex with DDB2 (p48), in nucleotide excision repair and the hereditary disease xeroderma pigmentosum. Our results thus suggest cellular roles of STAGA in chromatin modification, transcription, and transcription-coupled processes through direct physical interactions with sequence-specific transcription activators and with components of the splicing and DNA repair machineries.


Molecular Cell | 2000

Activator-Dependent Transcription from Chromatin In Vitro Involving Targeted Histone Acetylation by p300

Tapas K. Kundu; Vikas B. Palhan; Zhengxin Wang; Woojin An; Philip A. Cole; Robert G. Roeder

The transcriptional coactivator p300 shows physical and functional interactions with a diverse group of activators and contains an intrinsic acetyltransferase activity whose exact coactivator functions in the acetylation of nucleosomal histones versus other factors are poorly documented. Here, we show that p300 mediates acetyl-CoA-dependent transcription by GAL4-VP16 from a nucleosomal array template, that this involves p300 targeting by GAL4-VP16 and promoter-proximal histone acetylation prior to transcription, and that the affinities of different activators for p300 roughly correlate with corresponding levels of p300-dependent transcription. These results indicate that activators recruit p300 to nucleosomal templates by direct interactions and that bound p300 stimulates transcription, at least in part, by localized histone acetylation.


Journal of Biological Chemistry | 1998

A Human SPT3-TAFII31-GCN5-L Acetylase Complex Distinct from Transcription Factor IID

Ernest Martinez; Tapas K. Kundu; Jack Fu; Robert G. Roeder

In yeast, SPT3 is a component of the multiprotein SPT-ADA-GCN5 acetyltransferase (SAGA) complex that integrates proteins with transcription coactivator/adaptor functions (ADAs and GCN5), histone acetyltransferase activity (GCN5), and core promoter-selective functions (SPTs) involving interactions with the TATA-binding protein (TBP). In particular, yeast SPT3 has been shown to interact directly with TBP. Here we report the molecular cloning of a cDNA encoding a human homologue of yeast SPT3. Amino acid sequence comparisons between human SPT3 (hSPT3) and its counterparts in different yeast species reveal three highly conserved domains, with the most conserved 92-amino acid N-terminal domain being 25% identical with human TAFII18. Despite the significant sequence similarity with TAFII18, native hSPT3 is not a bona fide TAFII because it is not associated in vivoeither with human TBP/TFIID or with a TFIID-related TBP-free TAFII complex. However, we present evidence that hSPT3 is associated in vivo with TAFII31 and the recently described longer form of human GCN5 (hGCN5-L) in a novel human complex that has histone acetyltransferase activity. We propose that the human SPT3-TAFII31-GCN5-L acetyltransferase (STAGA) complex is a likely homologue of the yeast SAGA complex.


Nano Letters | 2008

Intrinsically Fluorescent Carbon Nanospheres as a Nuclear Targeting Vector: Delivery of Membrane-Impermeable Molecule to Modulate Gene Expression In Vivo

B. Ruthrotha Selvi; Dinesh Jagadeesan; B.S. Suma; G. Nagashankar; Mohammed Arif; Karanam Balasubramanyam; M. Eswaramoorthy; Tapas K. Kundu

In this report, we demonstrate glucose-derived carbon nanospheres to be an emerging class of intracellular carriers. The surfaces of these spheres are highly functionalized and do not need any further modification. Besides, the intrinsic fluorescence property of carbon nanospheres helps in tracking their cellular localization without any additional fluorescent tags. The spheres are found to target the nucleus of the mammalian cells, causing no toxicity. Interestingly, the in vivo experiments show that these nanospheres have an important ability to cross the blood-brain barrier and localize in the brain besides getting localized in the liver and the spleen. There is also evidence to show that they are continuously being removed from these tissues over time. Furthermore, these nanospheres were used as a carrier for the membrane-impermeable molecule CTPB (N-(4-chloro-3-trifluoromethylphenyl)-2-ethoxybenzamide), the only known small-molecule activator of histone acetyltransferase (HAT) p300. Biochemical analyses such as Western blotting, immunohistochemistry, and gene expression analysis show the induction of the hyperacetylation of histone acetyltransferase (HAT) p300 (autoacetylation) as well as histones both in vitro and in vivo and the activation of HAT-dependent transcription upon CTPB delivery. These results establish an alternative path for the activation of gene expression mediated by the induction of HAT activity instead of histone deacetylase (HDAC) inhibition.


Chemistry: A European Journal | 2011

Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates: selective detection and fluorescence imaging in living cells.

Debabrata Maity; Arun K. Manna; Dhanasekaran Karthigeyan; Tapas K. Kundu; Swapan K. Pati; T. Govindaraju

We present novel Schiff base ligands julolidine-carbonohydrazone 1 and julolidine-thiocarbonohydrazone 2 for selective detection of Cu(2+) in aqueous medium. The planar julolidine-based ligands can sense Cu(2+) colorimetrically with characteristic absorbance in the near-infrared (NIR, 700-1000 nm) region. Employing molecular probes 1 and 2 for detection of Cu(2+) not only allowed detection by the naked eye, but also detection of varying micromolar concentrations of Cu(2+) due to the appearance of distinct coloration. Moreover, Cu(2+) selectively quenches the fluorescence of julolidine-thiocarbonohydrazone 2 among all other metal ions, which increases the sensitivity of the probe. Furthermore, quenched fluorescence of the ligand 2 in the presence of Cu(2+) was restored by adjusting the complexation ability of the ligand. Hence, by treatment with ethylenediaminetetraacetic acid (EDTA), thus enabling reversibility and dual-check signaling, julolidine-thiocarbonohydrazone (2) can be used as a fluorescent molecular probe for the sensitive detection of Cu(2+) in biological systems. The ligands 1 and 2 can be utilized to monitor Cu(2+) in aqueous solution over a wide pH range. We have investigated the structural, electronic, and optical properties of the ligands using ab initio density functional theory (DFT) combined with time-dependent density functional theory (TDDFT) calculations. The observed absorption band in the NIR region is attributed to the formation of a charge-transfer complex between Cu(2+) and the ligand. The fluorescence-quenching behavior can be accounted for primarily due to the excited-state ligand 2 to metal (Cu(2+)) charge-transfer (LMCT) processes. Thus, experimentally observed characteristic NIR and fluorescence optical responses of the ligands upon binding to Cu(2+) are well supported by the theoretical calculations. Subsequently, we have employed julolidine-thiocarbonohydrazone 2 for reversible fluorescence sensing of intracellular Cu(2+) in cultured HEK293T cells.


Molecular and Cellular Biology | 2005

Human Histone Chaperone Nucleophosmin Enhances Acetylation-Dependent Chromatin Transcription†

Venkatesh Swaminathan; A. Hari Kishore; K. K. Febitha; Tapas K. Kundu

ABSTRACT Histone chaperones are a group of proteins that aid in the dynamic chromatin organization during different cellular processes. Here, we report that the human histone chaperone nucleophosmin interacts with the core histones H3, H2B, and H4 but that this histone interaction is not sufficient to confer the chaperone activity. Significantly, nucleophosmin enhances the acetylation-dependent chromatin transcription and it becomes acetylated both in vitro and in vivo. Acetylation of nucleophosmin and the core histones was found to be essential for the enhancement of chromatin transcription. The acetylated NPM1 not only shows an increased affinity toward acetylated histones but also shows enhanced histone transfer ability. Presumably, nucleophosmin disrupts the nucleosomal structure in an acetylation-dependent manner, resulting in the transcriptional activation. These results establish nucleophosmin (NPM1) as a human histone chaperone that becomes acetylated, resulting in the enhancement of chromatin transcription.


Molecular and Cellular Biology | 1999

HUMAN TFIIIC RELIEVES CHROMATIN-MEDIATED REPRESSION OF RNA POLYMERASE III TRANSCRIPTION AND CONTAINS AN INTRINSIC HISTONE ACETYLTRANSFERASE ACTIVITY

Tapas K. Kundu; Zhengxin Wang; Robert G. Roeder

ABSTRACT Human TFIIIC is a multisubunit factor that is essential for transcription by RNA polymerase III on tRNA and virus-associated RNA genes and initiates preinitiation complex assembly by direct recognition of promoter elements. We show that highly purified TFIIIC, at concentrations above those sufficient for transcription of naked DNA templates, effectively relieves nucleosome-mediated repression on an in vitro-reconstituted chromatin template. Highly purified TFIIIC alone can bind to the A and B boxes of a tRNA gene within a chromatin template and, further, displays a histone acetyltransferase activity that is intrinsic to at least one (and probably three) of its subunits. The possibility of a direct link between TFIIIC-dependent chromatin transcription and acetyltransferase activities is suggested by the partial loss of these activities, but not DNA transcription activity, following pretreatment of TFIIIC withp-hydroxymercuribenzoic acid.


Biotechnology Journal | 2009

Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics

Ruthrotha B. Selvi; Tapas K. Kundu

The eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamicity of the chromatin is responsible for the regulation of all the DNA‐templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP‐dependent remodeling factors and the chromatin‐modifying enzymes, mediate the combinatorial post‐translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small‐molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy.

Collaboration


Dive into the Tapas K. Kundu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayasha Shandilya

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Parijat Senapati

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Venkatesh Swaminathan

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Karanam Balasubramanyam

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Mohammed Arif

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

B. Ruthrotha Selvi

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Shrikanth S. Gadad

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Siddhartha Roy

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Stephanie Kaypee

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge