Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tapio I. Heino is active.

Publication


Featured researches published by Tapio I. Heino.


Mechanisms of Development | 2001

The Drosophila VEGF receptor homolog is expressed in hemocytes.

Tapio I. Heino; Terhi Karpanen; Gudrun Wahlström; Marianne Pulkkinen; Ulf Eriksson; Kari Alitalo; Christophe Roos

Several signalling pathways have been defined by studies of genes originally characterised in Drosophila. However, some mammalian signalling systems have so far escaped discovery in the fly. Here, we describe the identification and characterisation of fly homologs for the mammalian vascular endothelial growth factor/platelet derived growth factor (VEGF/PDGF) and the VEGF receptor. The Drosophila factor (DmVEGF-1) gene has two splice variants and is expressed during all stages, the signal distribution during embryogenesis being ubiquitous. The receptor (DmVEGFR) gene has several splice variants; the variations affecting only the extracellular domain. The most prominent form is expressed in cells of the embryonic haematopoietic cell lineage, starting in the mesodermal area of the head around stage 10 of embryogenesis. Expression persists in hemocytes as embryonic development proceeds and the cells migrate posteriorly. In a fly strain carrying a deletion uncovering the DmVEGFR gene, hemocytes are still present, but their migration is hampered and the hemocytes remain mainly in the anterior end close to their origin. These data suggest that the VEGF/PDGF signalling system may regulate the migration of the Drosophila embryonic haemocyte precursor cells.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons

Mari Palgi; Riitta Lindström; Johan Peränen; T. Petteri Piepponen; Mart Saarma; Tapio I. Heino

In vertebrates the development and function of the nervous system is regulated by neurotrophic factors (NTFs). Despite extensive searches no neurotrophic factors have been found in invertebrates. However, cell ablation studies in Drosophila suggest trophic interaction between neurons and glia. Here we report the invertebrate neurotrophic factor in Drosophila, DmMANF, homologous to mammalian MANF and CDNF. DmMANF is expressed in glia and essential for maintenance of dopamine positive neurites and dopamine levels. The abolishment of both maternal and zygotic DmMANF leads to the degeneration of axonal bundles in the embryonic central nervous system and subsequent nonapoptotic cell death. The rescue experiments confirm DmMANF as a functional ortholog of the human MANF gene thus opening the window for comparative studies of this protein family with potential for the treatment of Parkinsons disease.


Mechanisms of Development | 2002

The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides

Xiaojuan Meng; Gudrun Wahlström; Tiina Immonen; Meelis Kolmer; Mika Tirronen; Reinhard Predel; Nisse Kalkkinen; Tapio I. Heino; Hannu Sariola; Christophe Roos

In a genomic screen we isolated the Drosophila gene hugin (hug, cytology 87C1-2) by cross-hybridisation to a human glial cell line-derived neurotrophic factor cDNA. Upon cDNA sequence analysis and in vitro expression assays, the hugin gene was found to encode a signal peptide containing proprotein that was further processed in Schneider-2 cells into peptides similar to known neuropeptides. Two of the peptides were similar to FXPRL-amides (pyrokinins) and to the ecdysis-triggering hormone, respectively. The former displayed myostimulatory activity in a bioassay on the cockroach hyperneural muscle preparation, as well as in the Drosophila heart muscle assay. Hugin is expressed during the later half of embryogenesis and during larval stages in a subgroup of neurosecretory cells of the suboesophageal ganglion. Ubiquitous ectopic hugin expression resulted in larval death predominantly at or shortly after ecdysis from second to third instar, suggesting that at least one of the posttranslational cleavage products affects molting of the larva by interfering with the regulation of ecdysis.


Journal of Cell Biology | 2001

Twinfilin is required for actin-dependent developmental processes in Drosophila

Gudrun Wahlström; Maria K. Vartiainen; Lumi Yamamoto; Pieta K. Mattila; Pekka Lappalainen; Tapio I. Heino

The actin cytoskeleton is essential for cellular remodeling and many developmental and morphological processes. Twinfilin is a ubiquitous actin monomer–binding protein whose biological function has remained unclear. We discovered and cloned the Drosophila twinfilin homologue, and show that this protein is ubiquitously expressed in different tissues and developmental stages. A mutation in the twf gene leads to a number of developmental defects, including aberrant bristle morphology. This results from uncontrolled polymerization of actin filaments and misorientation of actin bundles in developing bristles. In wild-type bristles, twinfilin localizes diffusively to cytoplasm and to the ends of actin bundles, and may therefore be involved in localization of actin monomers in cells. We also show that twinfilin and the ADF/cofilin encoding gene twinstar interact genetically in bristle morphogenesis. These results demonstrate that the accurate regulation of size and dynamics of the actin monomer pool by twinfilin is essential for a number of actin-dependent developmental processes in multicellular eukaryotes.


BMC Genomics | 2012

Gene expression analysis of Drosophilaa Manf mutants reveals perturbations in membrane traffic and major metabolic changes

Mari Palgi; Dario Greco; Riitta Lindström; Petri Auvinen; Tapio I. Heino

BackgroundMANF and CDNF are evolutionarily conserved neurotrophic factors that specifically support dopaminergic neurons. To date, the receptors and signalling pathways of this novel MANF/CDNF family have remained unknown. Independent studies have showed upregulation of MANF by unfolded protein response (UPR). To enlighten the role of MANF in multicellular organism development we carried out a microarray-based analysis of the transcriptional changes induced by the loss and overexpression of Drosophila Manf.ResultsThe most dramatic change of expression was observed with genes coding membrane transport proteins and genes related to metabolism. When evaluating in parallel the ultrastructural data and transcriptome changes of maternal/zygotic and only zygotic Manf mutants, the endoplasmic reticulum (ER) stress and membrane traffic alterations were evident. In Drosophila Manf mutants the expression of several genes involved in Parkinsons disease (PD) was altered as well.ConclusionsWe conclude that besides a neurotrophic factor, Manf is an important cellular survival factor needed to overcome the UPR especially in tissues with high secretory function. In the absence of Manf, the expression of genes involved in membrane transport, particularly exocytosis and endosomal recycling pathway was altered. In neurodegenerative diseases, such as PD, correct protein folding and proteasome function as well as neurotransmitter synthesis and uptake are crucial for the survival of neurons. The degeneration of dopaminergic neurons is the hallmark for PD and our work provides a clue on the mechanisms by which the novel neurotrophic factor MANF protects these neurons.


Journal of Cell Science | 2010

Drosophila twinfilin is required for cell migration and synaptic endocytosis

Dan Wang; Lijun Zhang; Guoli Zhao; Gudrun Wahlström; Tapio I. Heino; Jiong Chen; Yong Q. Zhang

Precise actin regulation is essential for diverse cellular processes such as axonal growth, cell migration and endocytosis. twinfilin (twf) encodes a protein that sequesters actin monomers, but its in vivo functions are unclear. In this study, we characterized twf-null mutants in a metazoan for the first time and found that Drosophila twf negatively regulates F-actin formation in subcellular regions of rapid actin turnover in three different systems, namely postsynaptic neuromuscular junction (NMJ) synapses, migratory border cells and epithelial follicle cells. Loss of twf function results in defects in axonal growth in the brain and border cell migration in the ovary. Additionally, we found that the actin-dependent postsynaptic localization of glutamate receptor GluRIIA, but not GluRIIB, was specifically reduced in twf mutants. More importantly, we showed that twf mutations caused significantly reduced presynaptic endocytosis at NMJ synapses, as detected using the fluorescent dye FM1-43 uptake assay. Furthermore, electrophysiological analysis under high-frequency stimulation showed compromised neurotransmission in twf mutant synapses, confirming an insufficient replenishment of synaptic vesicles. Together, our results reveal that twinfilin promotes actin turnover in multiple cellular processes that are highly dependent on actin dynamics.


PLOS ONE | 2013

Characterization of the structural and functional determinants of MANF/CDNF in Drosophila in vivo model.

Riitta Lindström; Päivi Lindholm; Jukka Kallijärvi; Li-Ying Yu; T. Petteri Piepponen; Urmas Arumäe; Mart Saarma; Tapio I. Heino

Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo.


PLOS ONE | 2010

Gene Expression Profiling of U12-Type Spliceosome Mutant Drosophila Reveals Widespread Changes in Metabolic Pathways

Heli K. J. Pessa; Dario Greco; Jouni Kvist; Gudrun Wahlström; Tapio I. Heino; Petri Auvinen; Mikko J. Frilander

Background The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly. Methodology/Principal Findings We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group. Conclusions/Significance U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.


Chromosoma | 1989

Polytene chromosomes from ovarian pseudonurse cells of the Drosophila melanogaster otu mutant

Tapio I. Heino

Certain mutant alleles of the otu locus in Drosophila melanogaster produce abnormal nurse cells in the ovaries. These cells are called pseudonurse cells (PNC), since they generate polytene chromosomes instead of endopolyploid ones and do not normally have an oocyte to nurse. The banding pattern of polytene chromosome 3 from the salivary glands (SG) and from PNCs of homozygous otu1 females was compared and a detailed photomap of PNC chromosomes with different degrees of polyteny is presented. The banding pattern was found to be strikingly similiar in the two tissues. The puffing pattern of the PNC chromosomes was also studied and the function of the PNC chromosomes is discussed. No constrictions or breaks were found in the PNC chromosomes which seems to indicate that these sites, which are known to be underreplicated in the SG chromosomes, are equally replicated along with the rest of the chromosomes in the PNC nuclei.


Mechanisms of Development | 2006

Drosophila α-actinin in ovarian follicle cells is regulated by EGFR and Dpp signalling and required for cytoskeletal remodelling

Gudrun Wahlström; Hanna-Leena Norokorpi; Tapio I. Heino

alpha-Actinin is an evolutionarily conserved actin filament crosslinking protein with functions in both muscle and non-muscle cells. In non-muscle cells, interactions between alpha-actinin and its many binding partners regulate cell adhesion and motility. In Drosophila, one non-muscle and two muscle-specific alpha-actinin isoforms are produced by alternative splicing of a single gene. In wild-type ovaries, alpha-actinin is ubiquitously expressed. The non-muscle alpha-actinin mutant Actn(Delta233), which is viable and fertile, lacks alpha-actinin expression in ovarian germline cells, while somatic follicle cells express alpha-actinin at late oogenesis. Here we show that this latter population of alpha-actinin, termed FC-alpha-actinin, is absent from the dorsoanterior follicle cells, and we present evidence that this is the result of a negative regulation by combined Epidermal growth factor receptor (EGFR) and Decapentaplegic signalling. Furthermore, EGFR signalling increased the F-actin bundling activity of ectopically expressed muscle-specific alpha-actinin. We also describe a novel morphogenetic event in the follicle cells that occurs during egg elongation. This event involves a transient repolarisation of the basal actin fibres and the assembly of a posterior beta-integrin-dependent adhesion site accumulating alpha-actinin and Enabled. Clonal analysis using Actn null alleles demonstrated that although alpha-actinin was not necessary for actin fibre formation or maintenance, the cytoskeletal remodelling was perturbed, and Enabled did not localise in the posterior adhesion site. Nevertheless, epithelial morphogenesis proceeded normally. This work provides the first evidence that alpha-actinin is involved in the organisation of the cytoskeleton in a non-muscle tissue in Drosophila.

Collaboration


Dive into the Tapio I. Heino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mart Saarma

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mari Palgi

Tallinn University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge