Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara H. McHugh is active.

Publication


Featured researches published by Tara H. McHugh.


Journal of the American Oil Chemists' Society | 1994

Water vapor permeability properties of edible whey protein-lipid emulsion films

Tara H. McHugh; John M. Krochta

The water vapor permeability (WVP) of whey protein emulsion films was investigated. The exponential effect of relative humidity on the WVP of whey protein films was reduced through lipid incorporation. Film orientation had a significant effect on WVP due to emulsion separation during film formation. Heat denaturation of whey proteins lowered emulsion film WVP. Increasing fatty acid and fatty alcohol chainlengths significantly reduced WVP, as did increasing lipid concentration. The WVPs of fatty acids, fatty alcohols and beeswax were compared in whey protein-lipid emulsion films. Scanning and transmission electron microscopy revealed the crystalline microstructure of lipid particles in emulsion films.


Journal of Food Science | 2009

Nanocomposite Edible Films from Mango Puree Reinforced with Cellulose Nanofibers

Henriette M.C. Azeredo; Luiz Henrique C. Mattoso; Delilah Wood; Tina G. Williams; Roberto J. Avena-Bustillos; Tara H. McHugh

Cellulose nanoreinforcements have been used to improve mechanical and barrier properties of biopolymers, whose performance is usually poor when compared to those of synthetic polymers. Nanocomposite edible films have been developed by adding cellulose nanofibers (CNF) in different concentrations (up to 36 g/100 g) as nanoreinforcement to mango puree based edible films. The effect of CNF was studied in terms of tensile properties, water vapor permeability, and glass transition temperature (T(g)) of the nanocomposite films. CNF were effective in increasing tensile strength, and its effect on Youngs modulus was even more noticeable, especially at higher concentrations, suggesting the formation of a fibrillar network within the matrix. The addition of CNF was also effective to improve water vapor barrier of the films. Its influence on T(g) was small but significant. The study demonstrated that the properties of mango puree edible films can be significantly improved through CNF reinforcement.


Journal of Food Science | 2008

Scientific status summary. Innovative food packaging solutions.

Aaron L. Brody; Betty Bugusu; Jung H. Han; Claire Koelsch Sand; Tara H. McHugh

The Institute of Food Technologists has issued this Scientific Status Summary to inform readers of recent innovations in food packaging materials.


Journal of Food Science | 2010

Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content

Henriette M.C. Azeredo; Luiz H. C. Mattoso; Roberto J. Avena-Bustillos; Gino Ceotto Filho; Maximiliano L. Munford; Delilah F. Wood; Tara H. McHugh

UNLABELLED Chitosan is a biopolymer obtained by N-deacetylation of chitin, produced from shellfish waste, which may be employed to elaborate edible films or coatings to enhance shelf life of food products. This study was conducted to evaluate the effect of different concentrations of nanofiller (cellulose nanofibers, CNF) and plasticizer (glycerol) on tensile properties (tensile strength-TS, elongation at break-EB, and Youngs modulus-YM), water vapor permeability (WVP), and glass transition temperature (T(g)) of chitosan edible films, and to establish a formulation to optimize their properties. The experiment was conducted according to a central composite design, with 2 variables: CNF (0 to 20 g/100 g) and glycerol (0 to 30 g/100 g) concentrations in the film (on a dry basis), which was produced by the so-called casting technique. Most responses (except by EB) were favored by high CNF concentrations and low glycerol contents. The optimization was based on maximizing TS, YM, and T(g), and decreasing WVP, while maintaining a minimum acceptable EB of 10%. The optimum conditions were defined as: glycerol concentration, 18 g/100 g; and CNF concentration, 15 g/100 g. AFM imaging of films suggested good dispersion of the CNF and good CNF-matrix interactions, which explains the good performance of the nanocomposite films. PRACTICAL APPLICATION Chitosan is a biodegradable polymer which may be used to elaborate edible films or coatings to enhance shelf life of foods. This study demonstrates how cellulose nanofibers (CNF) can improve the mechanical and water vapor barrier properties of chitosan films. A nanocomposite film with 15% CNF and plasticized with 18% glycerol was comparable to some synthetic polymers in terms of strength and stiffness, but with poorer elongation and water vapor barrier, indicating that they can be used for applications that do not require high flexibility and/or water vapor barrier. The more important advantage of such films when compared to synthetic polymer films is their environmentally friendly properties.


Ultrasonics Sonochemistry | 2011

Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel

Zhongli Pan; Wenjuan Qu; Haile Ma; Griffiths G. Atungulu; Tara H. McHugh

There is a great demand for developing efficient extraction methods in order to reduce extraction time and increase the yield and activity of functional antioxidants. The yields, activities, and extraction kinetics of antioxidants from the dry peel of pomegranate marc were studied using ultrasound-assisted extraction in continuous and pulsed modes and the results were compared with conventional extraction (CE) at a temperature of 25±2 °C and water/peel ratio of 50/1, w/w. The studied factors were intensity level and treatment time for continuous ultrasound-assisted extraction (CUAE), and intensity level, number of pulse repetition, and pulse duration and interval for pulsed ultrasound-assisted extraction (PUAE). The results showed that all factors significantly affected the antioxidant yield, but only treatment time had a significant effect on the antioxidant activity. Compared to CE, PUAE at an intensity level of 59.2 W/cm(2), and a pulse duration of 5s and a resting interval of 5s increased the antioxidant yield by 22% and reduced the extraction time by 87%. Similarly, CUAE at the same intensity level increased the antioxidant yield by 24% and reduced the extraction time by 90%. Since PUAE had 50% energy saving compared to CUAE, we recommend using PUAE for the extraction with antioxidant yield of 14.5% and DPPH scavenging activity of 5.8 g/g. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound-assisted extractions under PUAE and CUAE. This research clearly demonstrated the superiority of PUAE for producing antioxidants from peel of pomegranate marc.


Journal of Food Science | 2009

Effects of Allspice, Cinnamon, and Clove Bud Essential Oils in Edible Apple Films on Physical Properties and Antimicrobial Activities

Wen-Xian Du; Carl W. Olsen; Roberto J. Avena-Bustillos; Tara H. McHugh; Carol E. Levin; Mendel Friedman

Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against L. monocytogenes than against the S. enterica. The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.


Journal of Food Science | 2009

Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products.

Sadhana Ravishankar; Libin Zhu; Carl W. Olsen; Tara H. McHugh; Mendel Friedman

Apple-based edible films containing plant antimicrobials were evaluated for their activity against pathogenic bacteria on meat and poultry products. Salmonella enterica or E. coli O157:H7 (10(7) CFU/g) cultures were surface inoculated on chicken breasts and Listeria monocytogenes (10(6) CFU/g) on ham. The inoculated products were then wrapped with edible films containing 3 concentrations (0.5%, 1.5%, and 3%) of cinnamaldehyde or carvacrol. Following incubation at either 23 or 4 degrees C for 72 h, samples were stomached in buffered peptone water, diluted, and plated for enumeration of survivors. The antimicrobial films exhibited concentration-dependent activities against the pathogens tested. At 23 degrees C on chicken breasts, films with 3% antimicrobials showed the highest reductions (4.3 to 6.8 log CFU/g) of both S. enterica and E. coli O157:H7. Films with 1.5% and 0.5% antimicrobials showed 2.4 to 4.3 and 1.6 to 2.8 log reductions, respectively. At 4 degrees C, carvacrol exhibited greater activity than did cinnamaldehyde. Films with 3%, 1.5%, and 0.5% carvacrol reduced the bacterial populations by about 3, 1.6 to 3, and 0.8 to 1 logs, respectively. Films with 3% and 1.5% cinnamaldehyde induced 1.2 to 2.8 and 1.2 to 1.3 log reductions, respectively. For L. monocytogenes on ham, carvacrol films induced greater reductions than did cinnamaldehyde films at all concentrations tested. In general, the reduction of L. monocytogenes on ham at 23 degrees C was greater than at 4 degrees C. Added antimicrobials had minor effects on physical properties of the films. The results suggest that the food industry and consumers could use these films as wrappings to control surface contamination by foodborne pathogenic microorganisms.


Journal of Agricultural and Food Chemistry | 2008

Storage Stability and Antibacterial Activity against Escherichia coli O157:H7 of Carvacrol in Edible Apple Films Made by Two Different Casting Methods

Wen-Xian Du; Carl W. Olsen; Roberto J. Avena-Bustillos; Tara H. McHugh; Carol E. Levin; Mendel Friedman

The antimicrobial activities against Escherichia coli O157:H7 as well as the stability of carvacrol, the main constituent of oregano oil, were evaluated during the preparation and storage of apple-based edible films made by two different casting methods, continuous casting and batch casting. Antimicrobial assays of films and high-performance liquid chromatography (HPLC) analysis of film extracts following storage up to 49 days at 5 and 25 degrees C revealed that (a) optimum antimicrobial effects were apparent with carvacrol levels of approximately 1.0% added to the purees prior to film preparation, (b) carvacrol in the films and film weights remained unchanged over the storage period of up to 7 weeks, and (c) casting methods affected carvacrol concentration, bactericidal activity, physicochemical properties, and colors of the apple films. Carvacrol addition to the purees used to prepare the films reduced water vapor and oxygen permeability of apple films. The results indicate that carvacrol has a dual benefit. It can be used to both impart antimicrobial activities and enhance barrier properties of edible films. The cited observations facilitate relating compositional and physicochemical properties of apple puree films containing volatile plant antimicrobials to their use in foods.


Journal of Food Science | 2009

Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods

Wen-Xian Du; Carl W. Olsen; Roberto J. Avena-Bustillos; Tara H. McHugh; Carol E. Levin; Robert E. Mandrell; Mendel Friedman

Physical properties as well as antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, garlic, and oregano essential oils (EOs) in tomato puree film-forming solutions (TPFFS) formulated into edible films at 0.5% to 3% (w/w) concentrations were investigated in this study. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor-phase diffusion of the antimicrobial from the film to the bacteria. The results indicate that the antimicrobial activities against the 3 pathogens were in the following order: oregano oil > allspice oil > garlic oil. Listeria monocytogenes was less resistant to EO vapors, while E. coli O157:H7 was more resistant to EOs as determined by both overlay and vapor-phase diffusion tests. The presence of plant EO antimicrobials reduced the viscosity of TPFFS at the higher shear rates, but did not affect water vapor permeability of films. EOs increased elongation and darkened the color of films. The results of the present study show that the 3 plant-derived EOs can be used to prepare tomato-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films.


Journal of Agricultural and Food Chemistry | 2010

Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.

Crisitina Bilbao-Sainz; Roberto J. Avena-Bustillos; Delilah F. Wood; Tina G. Williams; Tara H. McHugh

It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films.

Collaboration


Dive into the Tara H. McHugh's collaboration.

Top Co-Authors

Avatar

Roberto J. Avena-Bustillos

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Zhongli Pan

University of California

View shared research outputs
Top Co-Authors

Avatar

Wen-Xian Du

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Delilah F. Wood

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Bor-Sen Chiou

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Carl W. Olsen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mendel Friedman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Tina G. Williams

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Gokhan Bingol

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yuzhu Zhang

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge