Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara K. Beattie is active.

Publication


Featured researches published by Tara K. Beattie.


Journal of Clinical Microbiology | 2003

Determination of Amoebicidal Activities of Multipurpose Contact Lens Solutions by Using a Most Probable Number Enumeration Technique

Tara K. Beattie; David V. Seal; Alan Tomlinson; Angus McFadyen; Anthony Grimason

ABSTRACT Six multipurpose contact lens solutions [All-in-One, All-in-One (Light), ReNu MultiPlus, Optifree Express, Complete, and Solo-care soft] were tested for their efficacies against Acanthamoeba castellanii trophozoites and cysts by using a most probable number (MPN) technique for amoebic enumeration. Against trophozoites, All-in-One, ReNu Multiplus, and Optifree Express achieved total kill (log reduction of >3) after the manufacturers minimum recommended disinfection time (MMRDT), with the remaining solutions failing to reach a log reduction of 1. After 24 h of exposure, all solutions proved trophozoiticidal, achieving, with the exception of Complete (log reduction of 3.13), total kill. Against cysts, All-in-One gave a log reduction of >3 within the MMRDT, with all other solutions failing to achieve a log reduction of 1. After 24 h of exposure, All-in-One achieved total kill of cysts (log reduction of 3.74), ReNu MultiPlus gave a log reduction of 3.15, and the remaining solutions reached log reductions of between 1.09 and 2.27. The MPN technique provides a simple, reliable, and reproducible method of amoebic enumeration that depends on simply establishing the presence or absence of growth on culture plates inoculated with a series of dilutions and determining the MPN of amoebae present from statistical tables. By use of this technique, two of the multipurpose solutions tested, ReNu MultiPlus and Optifree Express, demonstrated effective trophozoiticidal activities within the recommended disinfection times; however, only All-in-One proved effective against both trophozoites and cysts over the same time period. This MPN technique, which uses axenically produced trophozoites and mature, double-walled cysts, has the potential to form the basis of a national standard for amoebicidal efficacy testing of multipurpose contact lens disinfecting solutions.


Chemosphere | 2011

Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes

Arthit Sakultantimetha; Helen Keenan; Tara K. Beattie; S. Bangkedphol; Olga Cavoura

Bioremediation of tributyltin (TBT) contaminated sediment was studied and degradation enhancement and improvement of bioavailability were also investigated. In TBT spiked sediment, the half-life of TBT in the control sample, representing natural attenuation, was 578 d indicating its persistence. In the stimulated sample (pH 7.5, aeration and incubated at 28°C), the half-life was significantly reduced to 11 d. Further stimulation by nutrient addition (succinate, glycerol and l-arginine) or inoculation with Enterobacter cloacae (∼10(7) viable cells g(-1) of sediment) resulted in half-life reduction to 9 and 10d, respectively. In non-spiked sediment, the indigenous microorganisms were able to degrade aged TBT, but the extended period of contamination decreased the degradation efficiency. To improve bioavailability, addition of surfactant, adjustment of salinity and sonication were studied. The highest percentage solubilisation of TBT in water was obtained by adjusting salinity to 20 psu, which increased the solubility of TBT from 13% to 33%. Half-lives after bioavailability was improved were 5, 4 and 4d for stimulation, stimulation w/nutrient addition and stimulation w/inoculation, respectively. However, natural attenuation in the control sample was not enhanced. The results show that providing suitable conditions is important in enhancing TBT biodegradation, and bioavailability improvement additionally increased the rate and degraded amount of TBT. Unfortunately, nutrient addition and inoculation of the degrader did not enhance the degradation appreciably.


Clinical Microbiology and Infection | 2014

Legionella spp. in UK composts—a potential public health issue?

Sandra L Currie; Tara K. Beattie; Charles W. Knapp; Diane Lindsay

Over the past 5 years, a number of cases of legionellosis in Scotland have been associated with compost use; however, studies investigating sources of infection other than water systems remain limited. This study delivers the first comprehensive survey of composts commonly available in the UK for the presence of Legionella species. Twenty-two store-bought composts, one green-waste compost and one home-made compost were tested for Legionella by culture methods on BCYE-α medium, and the findings were confirmed by macrophage infectivity potentiator (mip) speciation. Twenty-two of the samples were retested after an enrichment period of 8 weeks. In total, 15 of 24 composts tested positive for Legionella species, a higher level of contamination than previously seen in Europe. Two isolates of Legionella pneumophila were identified, and Legionella longbeachae serogroup 1 was found to be one of the most commonly isolated species. L. longbeachae infection would not be detected by routine Legionella urinary antigen assay, so such testing should not be used as the sole diagnostic technique in atypical pneumonia cases, particularly where there is an association with compost use. The occurrence of Legionella in over half of the samples tested indicates that compost could pose a public health risk. The addition of general hygiene warnings to compost packages may be beneficial in protecting public health.


Chemosphere | 2016

Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

Sadia Khan; Tara K. Beattie; Charles W. Knapp

Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance.


Environmental Processes | 2016

Antibiotic resistant bacteria found in municipal drinking water

Sadia Khan; Charles W. Knapp; Tara K. Beattie

Multidrug resistant bacteria in water supply systems have been emerging as a growing public health concern. Many factors affect the source and fate of these bacteria. However, conditions in the plumbing systems may contribute to the dispersion of resistance genes among bacterial populations. Through the process of lateral gene transfer, resistance genetic material can be exchanged between species in the microbial population, intensifying the problem of resistance genes. The main aim of this study was to investigate the diversity of microorganisms in tap water in Glasgow, Scotland, and the occurrence of certain antibiotic resistance genes and gene-transfer mechanisms. Results show that antibiotic resistant bacteria exist at the consumers’ end of the distribution system, some of which also contain integrase genes, which can aid in the dispersion of resistance genes. Presence of such microorganisms indicates that further investigations should be taken to assess the risks to public health.


Eye & Contact Lens-science and Clinical Practice | 2003

Surface treatment or material characteristic: the reason for the high level of Acanthamoeba attachment to silicone hydrogel contact lenses

Tara K. Beattie; Alan Tomlinson; David V. Seal

Purpose. To determine the reason for the high level of attachment of Acanthamebic to silicone hydrogel (SH) contact lenses. The effect surface treatment has on attachment is determined using silicone elastomer (SE) lenses. Methods. All test lenses were unworn. SH (PureVision), conventional hydrogel (Acuvue), treated SE (Silsoft), and untreated SE (Silsoft) lens quarters were incubated for 90 min with plate-cultured Acanthamoeba castellanii trophozoites. After incubation and rinsing, the trophozoites attached to one surface of each quarter were counted by direct light microscopy. Sixteen replicates were performed for each lens type. Logarithmic transformation of data allowed the use of parametric analysis of variance. Results. Lens polymer had a significant effect on attachment (P <0.001), with higher numbers of trophozoites attaching to the SH and SE (treated and untreated) lenses as compared with the conventional hydrogel. No significant difference in attachment was detected between the SH and SE (treated and untreated) lenses. Conclusion. Acanthamoeba attachment to the SH lens was significantly greater than to the conventional hydrogel. The similarity in attachment to surface-treated and non–surface-treated SE lenses suggests that the increased attachment found with the SH lens may be an inherent characteristic of the polymer rather than an effect of the surface treatment procedure. It is possible that SH lenses are at greater risk of promoting Acanthamoeba infection if exposed to the organism because of the enhanced attachment characteristic of this new material.


Eye & Contact Lens-science and Clinical Practice | 2009

The effect of surface treatment of silicone hydrogel contact lenses on the attachment of Acanthamoeba castellanii trophozoites

Tara K. Beattie; Alan Tomlinson

Objective: To determine if plasma surface treatment of Focus Night & Day silicone hydrogel contact lenses affects the attachment of Acanthamoeba. Methods: Unworn lotrafilcon A contact lenses with (Focus Night & Day) and without surface treatment and Acuvue, conventional hydrogel lenses, were quartered before 90-min incubation with Acanthamoeba castellanii trophozoites. After incubation and rinsing, the trophozoites attached to one surface of each quarter were counted by direct light microscopy. Sixteen replicates were observed for each lens type. Logarithmic transformation of data allowed the use of parametric analysis of variance. Results: No significant difference in attachment was established between the untreated lotrafilcon A and the conventional hydrogel lenses (P<0.001); however, surface treatment of the native Focus Night & Day material produced a significant increase in attachment (P<0.001). Conclusions: Commercially available Focus Night & Day lenses are subjected to a plasma surface treatment to reduce lens hydrophobicity; however, this procedure results in an enhanced acanthamoebal attachment. It is possible that the silicone hydrogel lens could be at a greater risk of promoting Acanthamoeba infection if exposed to the organism because of the enhanced attachment characteristic of this material. Eye care professionals should be aware of the enhanced affinity that Acanthamoeba show for this lens and accordingly emphasise to patients the significance of appropriate lens hygiene. This is particularly important where lenses are worn in a regime that could increase the chance of exposure to the organism, i.e., 6 nights/7 days extended wear or daily wear, where lenses will be stored in a lens case, or where lenses are worn when in contact with potentially contaminated water sources, i.e., swimming or showering.


Perspectives in Public Health | 2015

Compost and Legionella longbeachae: an emerging infection?

Sandra L Currie; Tara K. Beattie

Human disease caused by Legionella species is dominated by Legionella pneumophila, the main causative agent in cases of Legionnaires’ disease. However, other species are known to cause infection, for example, Legionella longbeachae causes an equivalent number of cases of disease as L. pneumophila in Australia and New Zealand. Infection with L. longbeachae is commonly associated with exposure to composts and potting soils, and cases of infection with this organism have been increasing in Europe over the past ten years. The increase in incidence may be linked to factors such as increased awareness of clinical presentation, or due to changing formulation of growing media, although it should be noted that the presence of Legionella species in growing media does not correlate with the number of cases currently seen. This is likely due to the variables associated with infection, for example, host factors such as smoking or underlying health conditions, or difference in growing media storage or climate, especially warm humid conditions, which may affect survival and growth of these organisms in the growing media environment. There are numerous unknowns in this area and collaboration between growing media manufacturers and researchers, as well as more awareness among diagnosing clinicians, laboratory staff and the general public is necessary to reduce risk. More research is needed before definitive conclusions can be drawn: L. pneumophila research currently dominates the field and it is likely that the overreliance on diagnostic techniques such as the urinary antigen test, which is specific for L. pneumophila Sg 1, is detrimental to the diagnosis of L. longbeachae infection.


Optometry and Vision Science | 2011

Salicylate inhibition of acanthamoebal attachment to contact lenses.

Tara K. Beattie; Alan Tomlinson; David V. Seal; Angus McFadyen

Purpose. Sodium salicylate has shown potential as a component of contact lens care solutions designed to reduce Acanthamoebal attachment to contact lenses. This study determined the minimum effective concentration required to significantly reduce amoebal attachment. Methods. Different concentrations of sodium salicylate (10, 15, and 20 mM) were applied during exposure of unworn or bacterial biofilm-coated hydrogel contact lenses to Acanthamoeba castellanii trophozoites. Salicylate was applied at stage 1 intervention during biofilm formation on lenses, at stage 2 intervention during amoebal exposure, or at both stages. Results. A significant reduction in amoebal attachment was achieved when 10 mM salicylate was included during stage 1 alone; however, 15 mM was required for stage 2 intervention to significantly reduce attachment to clean or biofilm-coated lenses. For stages 1 and 2 combined intervention, 10 mM sodium salicylate produced a significant reduction in amoebal attachment. Conclusions. In situ, within a contact lens case, biofilm formation and amoebal attachment would occur concurrently; therefore, stages 1 and 2 intervention would be closest to the real-life situation, thus indicating that 10 mM of salicylate would be an effective minimum concentration for reducing amoebal attachment to hydrogel contact lenses. Inclusion of components in contact lens care solution, such as sodium salicylate, which reduce Acanthamoebal attachment, has the potential to enhance effectiveness, particularly where amoebicidal efficacy may be limited, thus reducing the risk of contact lens-associated Acanthamoebal infection.


Ophthalmology | 2003

Enhanced attachment of acanthamoeba to extended-wear silicone hydrogel contact lenses

Tara K. Beattie; Alan Tomlinson; Angus McFadyen; David V. Seal; Anthony Grimason

PURPOSE To establish if silicone hydrogel (S-H) contact lenses could be a risk factor for Acanthamoeba infection by facilitating the attachment of trophozoites to their surface and transfer to the cornea and to determine the effect Acanthamoeba culture technique, patient wear, and Pseudomonas biofilm coating have on attachment to the S-H lens. DESIGN Experimental material study. PARTICIPANTS AND CONTROLS Attachment to a S-H lens was compared with that of a conventional hydrogel control lens. Sixteen replicates were carried out for both lens types under each test condition. METHODS Unworn S-H (PureVision; Bausch & Lomb, Kingston-Upon-Thames UK) and conventional hydrogel (Acuvue; Vistakon, Johnson & Johnson, Jacksonville, FL USA) lens quarters were incubated for 90 minutes in suspensions of liquid or plate-cultured Acanthamoeba castellanii trophozoites. Unworn, worn, and Pseudomonas biofilm coated S-H and hydrogel quarters were incubated for 90 minutes with plate-cultured trophozoites. MAIN OUTCOME MEASURES Trophozoites attached to one surface of each lens quarter were counted by direct light microscopy. Logarithmic transformation of data allowed the use of a parametric analysis of variance. RESULTS Lens polymer had a significant effect on attachment (P < 0.001), with higher numbers of trophozoites attaching to the S-H lens. Culture technique also had a significant effect on attachment (P = 0.013), with higher numbers of liquid-cultured organisms attaching to both lens types. A significant increase in attachment was demonstrated with worn and Pseudomonas biofilm-coated hydrogel lenses (P < 0.001); however, this difference was not seen with the S-H lens. CONCLUSIONS Acanthamoebal attachment to the S-H lenses was significantly greater than to the conventional hydrogel. Liquid-cultured trophozoites demonstrated a higher affinity for the lenses tested. Wear and bacterial biofilm coating had no effect on attachment to S-H lenses. The increased attachment found with the S-H lens may be an inherent characteristic of the polymer or a side effect of the surface treatment procedure to which the lenses are exposed. It is possible that S-H lenses are at greater risk of promoting Acanthamoeba infection if exposed to the organism because of the enhanced attachment characteristic of this new material.

Collaboration


Dive into the Tara K. Beattie's collaboration.

Top Co-Authors

Avatar

Alan Tomlinson

Glasgow Caledonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy Morse

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angus McFadyen

Glasgow Caledonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Keenan

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Bangkedphol

University of Strathclyde

View shared research outputs
Researchain Logo
Decentralizing Knowledge