Tara L. Winstone
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tara L. Winstone.
Journal of Bacteriology | 2000
Mingfu Liu; Raymond J. Turner; Tara L. Winstone; Andrea Saetre; Melanie Dyllick-Brenzinger; Glen Jickling; Leslie W. Tari; Joel H. Weiner; Diane E. Taylor
The Escherichia coli chromosomal determinant for tellurite resistance consists of two genes (tehA and tehB) which, when expressed on a multicopy plasmid, confer resistance to K(2)TeO(3) at 128 microg/ml, compared to the MIC of 2 microg/ml for the wild type. TehB is a cytoplasmic protein which possesses three conserved motifs (I, II, and III) found in S-adenosyl-L-methionine (SAM)-dependent non-nucleic acid methyltransferases. Replacement of the conserved aspartate residue in motif I by asparagine or alanine, or of the conserved phenylalanine in motif II by tyrosine or alanine, decreased resistance to background levels. Our results are consistent with motifs I and II in TehB being involved in SAM binding. Additionally, conformational changes in TehB are observed upon binding of both tellurite and SAM. The hydrodynamic radius of TehB measured by dynamic light scattering showed a approximately 20% decrease upon binding of both tellurite and SAM. These data suggest that TehB utilizes a methyltransferase activity in the detoxification of tellurite.
Protein Expression and Purification | 2002
Tara L. Winstone; Karen A Duncalf; Raymond J. Turner
EmrE is a member of the small multidrug resistance family of proteins and functions as a efflux transporter of lipophilic cations. This integral membrane protein is composed of 110 amino acids and is very hydrophobic with small loops exposed to the aqueous environment. This protein has been purified in a variety of ways including extraction with chloroform:methanol mixtures. This study explored culture growth and induction conditions, the parameters of organic solvent extraction, running conditions of a lipophilic column for lipid removal, as well as solubilization conditions. Optimal expression and purification protocols are crucial to the characterization goals of this protein. The experiments presented here led to an improvement in the yield of pure EmrE obtained by organic solvent extraction methods at a level of 0.9+/-0.2mg/L of culture. This is on the order of a 60% improvement over previous reports.
Journal of Molecular Biology | 2009
Charles M. Stevens; Tara L. Winstone; Raymond J. Turner; Mark Paetzel
The redox enzyme maturation proteins play an essential role in the proofreading and membrane targeting of protein substrates to the twin-arginine translocase. Functionally, the most thoroughly characterized redox enzyme maturation protein to date is Escherichia coli DmsD (EcDmsD). Herein, we present the X-ray crystal structure of the monomeric form of the EcDmsD refined to 2.0 A resolution, with clear electron density present for each of its 204 amino acid residues. The structural data presented here complement the biochemical data previously generated regarding the function of these twin-arginine translocase leader peptide binding chaperone proteins. Docking and molecular dynamics simulation experiments were used to provide a proposed model for how this chaperone is able to recognize the leader peptide of its substrate DmsA. The interactions observed in the model are in agreement with previous biochemical data and suggest intimate interactions between the conserved twin-arginine motif of the leader peptide of E. coli DmsA and the most conserved regions on the surface of EcDmsD.
Biochemistry | 2013
Tara L. Winstone; Vy A. Tran; Raymond J. Turner
The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the thermodynamics of binding between synthetic peptides composed of different portions of the DmsA leader peptide and DmsD. Only those peptides that included the complete and contiguous hydrophobic region of the DmsA leader sequence were able to bind DmsD with a 1:1 stoichiometry. Each of the peptides that were able to bind DmsD also showed some α-helical structure as indicated by circular dichroism spectroscopy. Differential scanning calorimetry revealed that DmsD gained very little thermal stability upon binding any of the DmsA leader peptides tested. Together, these results suggest that a portion of the hydrophobic region of the DmsA leader peptide determines the specificity of binding and may produce helical properties upon binding to DmsD. Overall, this study demonstrates that the recognition of the DmsA twin-arginine leader sequence by the DmsD chaperone shows unexpected rules and confirms further that the biochemistry of the interaction of the chaperone with their leaders demonstrates differences in their molecular interactions.
Biochimica et Biophysica Acta | 2014
Catherine S. Chan; Denice C. Bay; Thorin G.H. Leach; Tara L. Winstone; Lalita Kuzniatsova; Vy A. Tran; Raymond J. Turner
Redox enzyme maturation proteins (REMPs) are system-specific chaperones required for the maturation of complex iron sulfur molybdoenzymes that are important for anaerobic respiration in bacteria. Although they perform similar biological roles, REMPs are strikingly different in terms of sequence, structure, systems biology, and type of terminal electron acceptor that it supports for growth. Here we critically dissect current knowledge pertaining to REMPs of the nitrate reductase delta superfamily, specifically recognized in Escherichia coli to include NarJ, NarW, TorD, DmsD, and YcdY, also referred to as the NarJ REMP subfamily. We show that NarJ subfamily members share sequence homology and similar structural features as revealed by alignments performed on structurally characterized REMPs. We include an updated phylogenetic analysis of subfamily members, justifying their classification in this subfamily. The structural and functional roles of each member are presented herein and these discussions suggest that although NarJ subfamily members are related in sequence and structure, each member demonstrates remarkable uniqueness, validating the concept of system-specific chaperones.
FEBS Letters | 2010
Catherine S. Chan; Limei Chang; Tara L. Winstone; Raymond J. Turner
MINT‐8046409: NapD (uniprotkb:P0A9I5) and NapA (uniprotkb:P33937) physically interact (MI:0915) by two hybrid (MI:0018)
Biochimica et Biophysica Acta | 2016
Lalita Kuzniatsova; Tara L. Winstone; Raymond J. Turner
The Twin-arginine translocation (Tat) pathway serves for translocation of fully folded proteins across the cytoplasmic membrane in bacterial and chloroplast thylakoid membranes. The Escherichia coli Tat system consists of three core components: TatA, TatB, and TatC. The TatB and TatC subunits form the receptor complex for Tat dependent proteins. The TatB protein is composed of a single transmembrane helix and cytoplasmic domain. The structure of TatC revealed six transmembrane helices. Redox Enzyme Maturation Proteins (REMPs) are system specific chaperones, which play roles in the maturation of Tat dependent respiratory enzymes. Here we applied the in vivo bacterial two-hybrid technique to investigate interaction of REMPs with the TatBC proteins, finding that all but the formate dehydrogenase REMP dock to TatB or TatC. We focused on the NarJ subfamily, where DmsD--the REMP for dimethyl sulfoxide reductase in E. coli--was previously shown to interact with TatB and TatC. We found that these REMPs interact with TatC cytoplasmic loops 1, 2 and 4, with the exception of NarJ, that only interacts with 1 and 4. An in vitro isothermal titration calorimetry study was applied to confirm the evidence of interactions between TatC fragments and DmsD chaperone. Using a peptide overlapping array, it was shown that the different NarJ subfamily REMPs interact with different regions of the TatB cytoplasmic domains. The results demonstrate a role of REMP chaperones in targeting respiratory enzymes to the Tat system. The data suggests that the different REMPs may have different mechanisms for this task.
The Open Biochemistry Journal | 2014
Fabrizio Rivardo; Thorin G.H. Leach; Catherine S. Chan; Tara L. Winstone; Carol L. Ladner; Kwabena J. Sarfo; Raymond J. Turner
DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon 280 nm excitation irradiation. The phenomenon is due to quenching of the tryptophan residues in DmsD and is dependent on its folding and conformation. We also show that a tryptophan residue involved in DmsA signal peptide binding (W87) is important for photobleaching of DmsD. Mutation of W87, or binding of the DmsA twin-arginine signal peptide to DmsD in the pocket that includes W72, W80, and W91 significantly affects the degree of photobleaching. This study highlights the advantage of a photobleaching phenomenon to study protein folding and conformation changes within a protein that was once considered unusable in fluorescence spectroscopy.
Biochemistry | 2015
Tara L. Winstone; Raymond J. Turner
The system specific chaperone DmsD interacts with the twin-arginine leader peptide of its substrate, DmsA, allowing for proper folding and assembly of the DmsA catalytic subunit of dimethyl sulfoxide reductase prior to translocation by the twin-arginine translocase. DmsD residues important for binding the complete 45-amino acid sequence of the DmsA leader (DmsAL) peptide were previously identified and found to cluster in a pocket of the DmsD structure. In this study, we have utilized isothermal titration calorimetry (ITC) to determine the dissociation constant and thermodynamic parameters of 15 single-substitution DmsD variant proteins and a synthetic DmsAL peptide consisting of 27 amino acids (DmsAL₁₅₋₄₁). The stoichiometry values were determined via ITC, and the multimeric compositions of the DmsD variants in the absence and presence of peptide were characterized via size exclusion chromatography and native polyacrylamide gel electrophoresis. An up to 4-fold change in affinity was observed for DmsD variant proteins relative to that of wild-type DmsD, and variation of the entropic contribution to binding divided the binding site into two clusters: residues with either more or less favorable entropy. Substitution of hydrophobic residues along one helix face (helix 5) or prolines found on adjacent loops caused reduced binding affinity because of the increased entropic cost, which suggests that the twin-arginine motif of the DmsAL peptide binds to a preformed site on DmsD. Most DmsD variants were more than 90% monomeric in solution and bound a single peptide per protein molecule. The DmsD variant with the largest dimer population showed increased affinity and induced the formation of tetramers in the presence of peptide, suggesting that dimeric DmsD or an alternatively folded form of DmsD may play an as yet undefined role in binding.
Proteomics | 2006
Jenika M. Howell; Tara L. Winstone; Jens R. Coorssen; Raymond J. Turner