Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara Mahon is active.

Publication


Featured researches published by Tara Mahon.


Nature Biotechnology | 2005

Directed evolution of human T-cell receptors with picomolar affinities by phage display

Yi Li; Ruth Moysey; Peter Eamon Molloy; Annelise Vuidepot; Tara Mahon; Emma Baston; Steven M. Dunn; Nathaniel Liddy; Jansen P. Jacob; Bent K. Jakobsen; Jonathan M. Boulter

Peptides derived from almost all proteins, including disease-associated proteins, can be presented on the cell surface as peptide–human leukocyte antigen (pHLA) complexes. T cells specifically recognize pHLA with their clonally rearranged T-cell receptors (TCRs), whose natural affinities are limited to ∼1–100 μM. Here we describe the display of ten different human TCRs on the surface of bacteriophage, stabilized by a nonnative interchain disulfide bond. We report the directed evolution of high-affinity TCRs specific for two different pHLAs: the human T-cell lymphotropic virus type 1 (HTLV-1) tax11–19 peptide–HLA-A*0201 complex and the NY-ESO-1157–165 tumor-associated peptide antigen–HLA-A*0201 complex, with affinities of up to 2.5 nM and 26 pM, respectively, and we demonstrate their high specificity and sensitivity for targeting of cell-surface pHLAs.


Nature Medicine | 2008

Control of HIV-1 immune escape by CD8 T-cells expressing enhanced T-cell receptor

Angel Varela-Rohena; Peter Eamon Molloy; Steven M. Dunn; Yi Li; Richard G. Carroll; Anita Milicic; Tara Mahon; Deborah H. Sutton; Bruno Laugel; Ruth Moysey; Brian J. Cameron; Annelise Vuidepot; Marco E. Purbhoo; David K. Cole; Rodney E. Phillips; Carl H. June; Bent K. Jakobsen; Andrew K. Sewell; James L. Riley

HIVs considerable capacity to vary its HLA-I-restricted peptide antigens allows it to escape from host cytotoxic T lymphocytes (CTLs). Nevertheless, therapeutics able to target HLA-I-associated antigens, with specificity for the spectrum of preferred CTL escape mutants, could prove effective. Here we use phage display to isolate and enhance a T-cell antigen receptor (TCR) originating from a CTL line derived from an infected person and specific for the immunodominant HLA-A*02-restricted, HIVgag-specific peptide SLYNTVATL (SL9). High-affinity (KD < 400 pM) TCRs were produced that bound with a half-life in excess of 2.5 h, retained specificity, targeted HIV-infected cells and recognized all common escape variants of this epitope. CD8 T cells transduced with this supraphysiologic TCR produced a greater range of soluble factors and more interleukin-2 than those transduced with natural SL9-specific TCR, and they effectively controlled wild-type and mutant strains of HIV at effector-to-target ratios that could be achieved by T-cell therapy.


Journal of Immunology | 2008

Single and Dual Amino Acid Substitutions in TCR CDRs Can Enhance Antigen-Specific T Cell Functions

Paul F. Robbins; Yong F. Li; Mona El-Gamil; Yangbing Zhao; Jennifer A. Wargo; Zhili Zheng; Hui Xu; Richard A. Morgan; Steven A. Feldman; Laura A. Johnson; Alan D. Bennett; Steven M. Dunn; Tara Mahon; Bent K. Jakobsen; Steven A. Rosenberg

Single and dual amino acid substitution variants were generated in the TCR CDRs of three TCRs that recognize tumor-associated Ags. Substitutions that enhance the reactivity of TCR gene-modified T cells to the cognate Ag complex were identified using a rapid RNA-based transfection system. The screening of a panel of variants of the 1G4 TCR, that recognizes a peptide corresponding to amino acid residues 157–165 of the human cancer testis Ag NY-ESO-1 (SLLMWITQC) in the context of the HLA-A*02 class I allele, resulted in the identification of single and dual CDR3α and CDR2β amino acid substitutions that dramatically enhanced the specific recognition of NY-ESO-1+/HLA-A*02+ tumor cell lines by TCR gene-modified CD4+ T cells. Within this group of improved TCRs, a dual substitution in the 1G4 TCR CDR3α chain was identified that enhanced Ag-specific reactivity in gene-modified CD4+ and CD8+ T cells. Separate experiments on two distinct TCRs that recognize the MART-1 27–35 (AAGIGILTV) peptide/HLA-A*02 Ag complex characterized single amino acid substitutions in both TCRs that enhanced CD4+ T cell Ag-specific reactivity. These results indicate that simple TCR substitution variants that enhance T cell function can be identified by rapid transfection and assay techniques, providing the means for generating potent Ag complex-specific TCR genes for use in the study of T cell interactions and in T cell adoptive immunotherapy.


Journal of Experimental Medicine | 2003

Bruton's tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production.

Nicole J. Horwood; Tara Mahon; John P. McDaid; Jamie Campbell; Hiroyuki Mano; Fionula M. Brennan; David Webster; Brian M. J. Foxwell

Lipopolysaccharide (LPS), a product of Gram-negative bacteria, is potent mediator of tumor necrosis factor (TNF)α production by myeloid/macrophage cells. Inhibitors capable of blocking the signaling events that result in TNFα production could provide useful therapeutics for treating septic shock and other inflammatory diseases. Broad spectrum tyrosine inhibitors are known to inhibit TNFα production, however, no particular family of tyrosine kinases has been shown to be essential for this process. Here we show that the Brutons tyrosine kinase (Btk)-deficient mononuclear cells from X-linked agammaglobulinemia patients have impaired LPS-induced TNFα production and that LPS rapidly induces Btk kinase activity in normal monocytes. In addition, adenoviral overexpression of Btk in normal human monocytes enhanced TNFα production. We examined the role of Btk in TNFα production using luciferase reporter adenoviral constructs and have established that overexpression of Btk results in the stabilization of TNFα mRNA via the 3′ untranslated region. Stimulation with LPS also induced the activation of related tyrosine kinase, Tec, suggesting that the Tec family kinases are important components for LPS-induced TNFα production. This study provides the first clear evidence that tyrosine kinases of the Tec family, in particular Btk, are key elements of LPS-induced TNFα production and consequently may provide valuable therapeutic targets for intervention in inflammatory conditions.


Journal of Immunology | 2006

Bruton’s Tyrosine Kinase Is Required for TLR2 and TLR4-Induced TNF, but Not IL-6, Production

Nicole J. Horwood; Theresa H. Page; John P. McDaid; Christine D. Palmer; Jamie Campbell; Tara Mahon; Fionula M. Brennan; David Webster; Brian M. J. Foxwell

Bruton’s tyrosine kinase (Btk), the gene mutated in the human immunodeficiency X-linked agammaglobulinemia, is activated by LPS and is required for LPS-induced TNF production. In this study, we have investigated the role of Btk both in signaling via another TLR (TLR2) and in the production of other proinflammatory cytokines such as IL-1β, IL-6, and IL-8. Our data show that in X-linked agammaglobulinemia PBMCs, stimulation with TLR4 (LPS) or TLR2 (N-palmitoyl-S-[2, 3-bis(palmitoyloxy)-(2R)-propyl]-(R)-cysteine) ligands produces significantly less TNF and IL-1β than in normal controls. In contrast, a lack of Btk has no impact on the production of IL-6, IL-8, or the anti-inflammatory cytokine, IL-10. Our previous data suggested that Btk lies within a p38-dependent pathway that stabilizes TNF mRNA. Accordingly, TaqMan quantitative PCR analysis of actinomycin D time courses presented in this work shows that overexpression of Btk is able to stabilize TNF, but not IL-6 mRNA. Furthermore, using the p38 inhibitor SB203580, we show that the TLR4-induced production of TNF, but not IL-6, requires the activity of p38 MAPK. These data provide evidence for a common requirement for Btk in TLR2- and TLR4-mediated induction of two important proinflammatory cytokines, TNF and IL-1β, and reveal important differences in the TLR-mediated signals required for the production of IL-6, IL-8, and IL-10.


Nature Medicine | 2012

Monoclonal TCR-redirected tumor cell killing

Nathaniel Liddy; Giovanna Bossi; Katherine J. Adams; Anna Lissina; Tara Mahon; Namir J. Hassan; Jessie Gavarret; Frayne Bianchi; Nicholas J. Pumphrey; Kristin Ladell; Emma Gostick; Andrew K. Sewell; Nikolai Lissin; Naomi Harwood; Peter Eamon Molloy; Yi Li; Brian J. Cameron; Malkit Sami; Emma Baston; Penio Todorov; Samantha Paston; Rebecca Dennis; Jane Harper; Steve M. Dunn; Rebecca Ashfield; Andy Johnson; Yvonne McGrath; Gabriela Plesa; Carl H. June; Michael Kalos

T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.


Protein Science | 2006

Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity.

Steven M. Dunn; Pierre J. Rizkallah; Emma Baston; Tara Mahon; Brian J. Cameron; Ruth Moysey; Feng Gao; Malkit Sami; Jonathan M. Boulter; Yi Li; Bent K. Jakobsen

The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell‐surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide‐independent cross‐reactivity of native TCRs is generally avoided through cell‐mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line‐encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high‐affinity TCRs with therapeutic and diagnostic potential.


Journal of Immunology | 2006

Quantifying and Imaging NY-ESO-1/LAGE-1-Derived Epitopes on Tumor Cells Using High Affinity T Cell Receptors

Marco A. Purbhoo; Deborah H. Sutton; Joanna E. Brewer; Rebecca E. Mullings; Maxine E. Hill; Tara Mahon; Julia Karbach; Elke Jäger; Brian J. Cameron; Nikolai Lissin; Paresh Vyas; Ji-Li Chen; Vincenzo Cerundolo; Bent K. Jakobsen

Presentation of intracellular tumor-associated Ags (TAAs) in the context of HLA class I molecules offers unique cancer-specific cell surface markers for the identification and targeting of tumor cells. For most peptide Ags, the levels of and variations in cell surface presentation remain unknown, yet these parameters are of crucial importance when considering specific TAAs as targets for anticancer therapy. Here we use a soluble TCR with picomolar affinity for the HLA-A2-restricted 157–165 epitope of the NY-ESO-1 and LAGE-1 TAAs to investigate presentation of this immunodominant epitope on the surface of a variety of cancer cells. By single molecule fluorescence microscopy, we directly visualize HLA-peptide presentation for the first time, demonstrating that NY-ESO-1/LAGE-1-positive tumor cells present 10–50 NY-ESO-1/LAGE-1157–165 epitopes per cell.


Scientific Reports | 2016

Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy.

Marine C C Raman; Pierre J. Rizkallah; Ruth Simmons; Zoe Donnellan; Joseph Dukes; Giovanna Bossi; Gabrielle S. Le Provost; Penio Todorov; Emma Baston; Emma Hickman; Tara Mahon; Namir J. Hassan; Annelise Vuidepot; Malkit Sami; David K. Cole; Bent K. Jakobsen

Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.


Molecular Therapy | 2016

Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors.

Hongbing Yang; Sandrine Buisson; Giovanna Bossi; Zoë R. Wallace; Gemma Hancock; Chun So; Rebecca Ashfield; Annelise Vuidepot; Tara Mahon; Peter Eamon Molloy; Joanne Oates; Samantha Paston; Milos Aleksic; Namir J. Hassan; Bent K. Jakobsen; Lucy Dorrell

Persistence of human immunodeficiency virus (HIV) in a latent state in long-lived CD4+ T-cells is a major barrier to eradication. Latency-reversing agents that induce direct or immune-mediated cell death upon reactivation of HIV are a possible solution. However, clearance of reactivated cells may require immunotherapeutic agents that are fine-tuned to detect viral antigens when expressed at low levels. We tested the antiviral efficacy of immune-mobilizing monoclonal T-cell receptors against viruses (ImmTAVs), bispecific molecules that redirect CD8+ T-cells to kill HIV-infected CD4+ T-cells. T-cell receptors specific for an immunodominant Gag epitope, SL9, and its escape variants were engineered to achieve supraphysiological affinity and fused to a humanised CD3-specific single chain antibody fragment. Ex vivo polyclonal CD8+ T-cells were efficiently redirected by immune-mobilising monoclonal T-cell receptors against viruses to eliminate CD4+ T-cells from human histocompatibility leukocyte antigen (HLA)-A*0201-positive antiretroviral therapy-treated patients after reactivation of inducible HIV in vitro. The efficiency of infected cell elimination correlated with HIV Gag expression. Immune-mobilising monoclonal T-cell receptors against viruses have potential as a therapy to facilitate clearance of reactivated HIV reservoir cells.

Collaboration


Dive into the Tara Mahon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Li

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Andrew Johnson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter L. Molloy

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge