Tarek A. A. Moussa
Cairo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tarek A. A. Moussa.
Persoonia | 2015
J. B. Stielow; C.A. Lévesque; Keith A. Seifert; Wieland Meyer; Laszlo Irinyi; D. Smits; R. Renfurm; G.J.M. Verkley; Marizeth Groenewald; D. Chaduli; A. Lomascolo; S. Welti; L. Lesage-Meessen; A. Favel; Abdullah M. S. Al-Hatmi; Ulrike Damm; N. Yilmaz; Jos Houbraken; Lorenzo Lombard; W. Quaedvlieg; M. Binder; L.A.I. Vaas; D. Vu; Andrey Yurkov; Dominik Begerow; O. Roehl; Marco A. Guerreiro; Álvaro Fonseca; K. Samerpitak; A.D. van Diepeningen
The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1–D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial β -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5–6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.
Fungal Diversity | 2014
Michaela Lackner; G. Sybren de Hoog; Liyue Yang; Leandro F. Moreno; Sarah Abdalla Ahmed; Fritz Andreas; Josef Kaltseis; Markus Nagl; Cornelia Lass-Flörl; Brigitte Risslegger; Günter Rambach; Cornelia Speth; Vincent Robert; Walter Buzina; Sharon C.-A. Chen; Jean-Philippe Bouchara; José F. Cano-Lira; Josep Guarro; Josepa Gené; Fabiola Fernández Silva; Rosa M. T. Haido; Gerhard Haase; Vladimír Havlíček; Dea Garcia-Hermoso; Jacques F. Meis; Ferry Hagen; Martin Kirchmair; Johannes Rainer; Katharina Schwabenbauer; Mirjam Zoderer
As a result of fundamental changes in the International Code of Nomenclature on the use of separate names for sexual and asexual stages of fungi, generic names of many groups should be reconsidered. Members of the ECMM/ISHAM working group on Pseudallescheria/Scedosporium infections herein advocate a novel nomenclature for genera and species in Pseudallescheria, Scedosporium and allied taxa. The generic names Parascedosporium, Lomentospora, Petriella, Petriellopsis, and Scedosporium are proposed for a lineage within Microascaceae with mostly Scedosporium anamorphs producing slimy, annellidic conidia. Considering that Scedosporium has priority over Pseudallescheria and that Scedosporium prolificans is phylogenetically distinct from the other Scedosporium species, some name changes are proposed. Pseudallescheria minutispora and Petriellidium desertorum are renamed as Scedosporium minutisporum and S. desertorum, respectively. Scedosporium prolificans is renamed as Lomentospora prolificans.
Antimicrobial Agents and Chemotherapy | 2014
Michaela Lackner; Ferry Hagen; Jacques F. Meis; A.H.G. Gerrits van den Ende; D. Vu; V. Robert; J. Fritz; Tarek A. A. Moussa; G.S. de Hoog
ABSTRACT Scedosporium species show decreased susceptibility to the majority of systemic antifungal drugs. Acquired resistance is likely to disseminate differentially with the mode of exchange of genetic material between lineages. Inter- and intraspecific diversities of Scedosporium species were analyzed for three partitions (rDNA internal transcribed spacer gene [ITS], partial β-tubulin gene, and amplified fragment length polymorphism profiles), with the aim to establish distribution of resistance between species, populations, and strains. Heterogeneity of and recombination between lineages were determined, and distances between clusters were calculated using a centroid approach. Clinical, geographic, and antifungal data were plotted on diversity networks. Scedosporium minutisporum, Scedosporium desertorum, and Scedosporium aurantiacum were distinguished unambiguously in all partitions and had differential antifungal susceptibility profiles (ASP). Pseudallescheria fusoidea and Pseudallescheria ellipsoidea were indistinguishable from Scedosporium boydii. Pseudallescheria angusta took an intermediate position between Scedosporium apiospermum and S. boydii. Scedosporium boydii and S. apiospermum had identical ASP. Differences in (multi)resistance were linked to individual strains. S. apiospermum and S. boydii showed limited interbreeding and were recognized as valid, sympatric species. The S. apiospermum/S. boydii group, comprising the main clinically relevant Scedosporium species, consists of separate lineages and is interpreted as a complex undergoing sympatric evolution with incomplete lineage sorting. In routine diagnostics, the lineages in S. apiospermum/S. boydii are indicated with the umbrella descriptor “S. apiospermum complex”; individual species can be identified with rDNA ITS with 96.3% confidence. Voriconazole is recommended as the first-line treatment; resistance against this compound is rare.
Annals of Clinical Microbiology and Antimicrobials | 2014
Salwa F. Ahmed; Mostafa Mohamed M Ali; Zienat Kamel Mohamed; Tarek A. A. Moussa; John D. Klena
BackgroundExtended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Enterobacteriaeceae. CTX-M type extended-spectrum β- lactamases, of which there are now over 90 variants, are distributed globally, yet appear to vary in regional distribution. AmpC β-lactamases hydrolyze third generation cephalosporins, but are resistant to inhibition by clavulanate or other β-lactamase inhibitors in vitro. Fecal carriage and rates of colonization by bacteria harboring these resistance mechanisms have been reported in patients with community-acquired infections and in healthy members of their households. Expression of these ESBLs compromises the efficacy of current antibacterial therapies, potentially increasing the seriousness of hospital- and community-acquired Escherichia coli (E. coli) infections.To investigate the occurrence of ESBL-producing E. coli in human fecal flora isolated from two pediatric populations residing in the Libyan cities Zleiten and Abou El Khoms. Isolates were further studied to characterize genes encoding β-lactam resistance, and establish genetic relationships.MethodsAntibiotic resistance profiles of phenotypically characterized E. coli isolates recovered from the stools of 243 Libyan children during two surveillance periods in 2001 and 2007 were determined by the disk diffusion method. ESBL-screening was performed using the cephalosporin/clavulanate double synergy disc method, and the AmpC-phenotype was confirmed by the aminophenyl-boronic acid test. ESBL genes were molecularly characterized. Phylogenetic group and multilocus sequence typing (MLST) were determined for ESBL-producing isolates and PFGE was performed to compare banding profiles of some dominant strains.ResultsESBLs were identified in 13.4% (18/134) of E. coli isolates, and nine isolates (6.7%) demonstrated AmpC activity; all 18 isolates contained a CTX-M gene. Three CTX-M gene families (CTX-M-1, n = 9; CTX-M-15, n = 8 and CTX-M-3, n = 1) were distributed in diverse E. coli backgrounds (phylogenetic group D, 39%; B2, 28%; B1, 22% and A, 11%). MLST analysis revealed 14 sequence type (ST) with six new sequence types. The gene encoding the CMY-2 enzyme was detected in five AmpC-positive E. coli.ConclusionsThese results identified heterogeneous clones of CTX-M-producing E. coli in the fecal isolates, indicating that the intestinal tract acts as a reservoir for ESBL-producing organisms, and a trafficker of antibiotic resistance genes.
Fungal Genetics and Biology | 2009
Sabiha Yasmin; Beate Abt; Markus Schrettl; Tarek A. A. Moussa; Ernst R. Werner; Hubertus Haas
Zinc plays a critical role in a diverse array of biochemical processes. However, excess of zinc is deleterious to cells. Therefore, cells require finely tuned homeostatic mechanisms to balance uptake and storage of zinc. Here we show that iron starvation affects zinc metabolism by downregulating expression of the plasma membrane zinc importer encoding zrfB and upregulating the putative vacuolar zinc transporter-encoding zrcA in Aspergillus fumigatus. Nevertheless, the zinc content of iron-starved mycelia exceeded that of iron replete mycelia, possibly due to unspecific metal uptake induced by iron starvation. In agreement with increased zinc excess and zinc toxicity during iron starvation, deficiency in siderophore-mediated high-affinity iron uptake caused hypersensitivity to zinc. Moreover, an increase of zinc uptake by conditional overexpression of zrfB was more toxic under iron depleted compared to iron replete conditions. This deregulated zinc uptake under iron starvation caused a decrease in heme production and an increase in protoporphyrin IX accumulation. Furthermore, zinc excess impaired production of the extracellular siderophore triacetylfusarinine C but not the intracellular siderophore ferricrocin. Taken together, these data demonstrate a fine tuned coordination of zinc and iron metabolism in A. fumigatus.
Studies in Mycology | 2017
Maxelle Martins Teixeira; Leandro F. Moreno; Benjamin Stielow; Anna Muszewska; M. Hainaut; L. Gonzaga; A. Abouelleil; José S. L. Patané; M. Priest; Rozilda Lopes de Souza; S. Young; Karen Spadari Ferreira; Q. Zeng; M.M.L. da Cunha; A. Gladki; Bridget M. Barker; Vânia Aparecida Vicente; E.M. de Souza; Sónia Almeida; Bernard Henrissat; Ana Tr Vasconcelos; Shuwen Deng; Hermann Voglmayr; Tarek A. A. Moussa; Anna A. Gorbushina; Maria Ss Felipe; Christina A. Cuomo; G. Sybren de Hoog
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
American Journal of Tropical Medicine and Hygiene | 2012
Mostafa Mohamed Mohamed Ali; Zienat Kamel Mohamed; John D. Klena; Salwa F. Ahmed; Tarek A. A. Moussa; Khalifa Sifaw Ghenghesh
Diarrheagenic Escherichia coli (DEC) are important enteric pathogens that cause a wide variety of gastrointestinal diseases, particularly in children. Escherichia coli isolates cultured from 243 diarrheal stool samples obtained from Libyan children and 50 water samples were screened by polymerase chain reaction (PCR) for genes characteristic of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), and enteroinvasive E. coli (EIEC). The DEC were detected in 21 (8.6%) children with diarrhea; 10 (4.1%) cases were identified as EAEC, 3 (1.2%) as EPEC, and 8 (3.3%) were ETEC; EHEC, and EIEC were not detected. All DEC were grouped phylogenetically by PCR with the majority (> 70%) identified as phylogenetic groups A and B1. The EAEC isolates were also tested for eight genes associated with virulence using PCR. Multi-virulence (≥ 3 virulence factors) was found in 50% of EAEC isolates. Isolated EAEC possessed different virulence traits and belonged to different phylogenetic groups indicating their heterogeneity.
Journal of Infection in Developing Countries | 2014
Mostafa Mohamed Mohamed Ali; Salwa F. Ahmed; John D. Klena; Zienat Kamel Mohamed; Tarek A. A. Moussa; Khalifa Sifaw Ghenghesh
INTRODUCTION Little information is available regarding the significance of enteroaggregative Escherichia coli (EAEC) in pediatric diarrhea in Egypt. METHODOLOGY Escherichia coli was isolated from stool samples of 62 diarrheic and 43 non-diarrheic (control) Egyptian children. Samples were screened for genes specific for enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC), and enteroinvasive E. coli (EIEC) using polymerase chain reaction (PCR). Diarrheagenic E. coli were grouped phylogenetically using PCR and tested for their susceptibility to antibiotics using the disk diffusion method. Isolates designated as EAEC were examined for eight virulence factors (VFs) using PCR. RESULTS EAEC was detected in 19 (30.7%) and 4 (9.3%), EPEC in 2 (3.2%) and 1 (2.3%), and ETEC in 2 (3.2%) and 0 (0.0%) diarrheic and control children, respectively; STEC and EIEC were not detected. Only EAEC was significantly isolated from diarrheic children compared with controls (p < 0.01, OR = 4.31).Three or more VFs (multivirulent isolates) were found in 52.6% and 50% of EAEC isolated from diarrheic children and controls, respectively. More than 73% (17/23) of EAEC isolates were identified as belonging to phylogenetic group D. Multiple-antibiotic resistance (resistance to three or more drugs) was observed in more than 91% of EAEC. CONCLUSIONS Multivirulent EAEC is a significant causative agent of pediatric diarrhea in Egypt, with the majority of isolated EAEC belong to phylogenetic group D. Multiple-antibiotic resistance among EAEC has the potential to be a serious public health problem for the country.
Pharmacognosy Magazine | 2013
Hassan M. Albishri; Omar A. Almaghrabi; Tarek A. A. Moussa
Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.
Fems Microbiology Letters | 2009
Tarek A. A. Moussa
The gene (pox2) encoding a phenol oxidase from Pleurotus ostreatus, a lignin-degrading basidiomycete, was sequenced and the corresponding pox2-cDNA was also synthesized, cloned and sequenced. The isolated gene consisted of 2674 bp, with the coding sequence interrupted by 19 introns and flanked by an upstream region in which the putative metal-responsive elements (MREs) were determined in the promoter region (849 bp), where MRE 1, 2, 3 and 4 were located in positions -20, -60, -236 and -297. A functional TATA consensus sequence was recognized in position -85, while CAAT and its inversion consensus sequences were recognized in positions -284, -554, -689 and -752. The putative GC box consensus sequences were recognized in positions -181 and -460, and xenobiotic-responsive elements in positions -107, -277 and -390. The isolation of a second cDNA (pox2-cDNA), the nucleotide sequence of pox2, was found to contain an ORF of 1665 bp capable of coding for a protein of 533 amino acid residues. Northern blot analysis revealed that strong transcriptional induction was observed in the copper-supplemented cultures for the pox2 gene.