Tarek Shazly
University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tarek Shazly.
Biomacromolecules | 2012
J. Luckanagul; L. A. Lee; Q. L. Nguyen; P. Sitasuwan; Xioming Yang; Tarek Shazly; Qian Wang
In regenerative medicine, a synthetic extracellular matrix is crucial for supporting stem cells during its differentiation process to integrate into surrounding tissues. Hydrogels are used extensively in biomaterials as synthetic matrices to support the cells. However, to mimic the biological niche of a functional tissue, various chemical functionalities are necessary. We present here, a method of functionalizing a highly porous hydrogel with functional groups by mixing the hydrogel with a plant virus, tobacco mosaic virus (TMV), and its mutant. The implication of this process resides with the three important features of TMV: its well-defined genetic/chemical modularity, its multivalency (TMV capsid is composed of 2130 copies of identical subunits), and its well-defined structural features. Previous studies utilizing the native TMV on two-dimensional supports accelerated mesenchymal stem cell differentiation, and surfaces modified with genetically modified viral particles further enhanced cell attachment and differentiation. Herein we demonstrate that functionalization of a porous alginate scaffold can be achieved by the addition of viral particles with minimal processing and downstream purifications, and the cell attachment and differentiation within the macroporous scaffold can be effectively manipulated by altering the peptide or small molecule displayed on the viral particles.
Circulation | 2013
Vijaya B. Kolachalama; Stephen D. Pacetti; Joseph W. Franses; John Stankus; Hugh Zhao; Tarek Shazly; Alexander Nikanorov; Lewis B. Schwartz; Abraham R. Tzafriri; Elazer R. Edelman
Background— Drug-coated balloons are increasingly used for peripheral vascular disease, and, yet, mechanisms of tissue uptake and retention remain poorly characterized. Most systems to date have used paclitaxel, touting its propensity to associate with various excipients that can optimize its transfer and retention. We examined zotarolimus pharmacokinetics. Methods and Results— Animal studies, bench-top experiments, and computational modeling were integrated to quantify arterial distribution after zotarolimus-coated balloon use. Drug diffusivity and binding parameters for use in computational modeling were estimated from the kinetics of zotarolimus uptake into excised porcine femoral artery specimens immersed in radiolabeled drug solutions. Like paclitaxel, zotarolimus exhibited high partitioning into the arterial wall. Exposure of intimal tissue to drug revealed differential distribution patterns, with zotarolimus concentration decreasing with transmural depth as opposed to the multiple peaks displayed by paclitaxel. Drug release kinetics was measured by inflating zotarolimus-coated balloons in whole blood. In vivo drug uptake in swine arteries increased with inflation time but not with balloon size. Simulations coupling transmural diffusion and reversible binding to tissue proteins predicted arterial distribution that correlated with in vivo uptake. Diffusion governed drug distribution soon after balloon expansion, but binding determined drug retention. Conclusions— A large bolus of zotarolimus releases during balloon inflation, some of which pervades the tissue, and a fraction of the remaining drug adheres to the tissue–lumen interface. As a result, the duration of delivery modulates tissue uptake where diffusion and reversible binding to tissue proteins determine drug transport and retention, respectively.
Journal of Biomedical Materials Research Part A | 2010
Tarek Shazly; Aaron B. Baker; John R. Naber; Adriana Bon; Krystyn J. Van Vliet; Elazer R. Edelman
Two-component hydrogels formed with star polyethylene glycol amine and linear dextran aldehyde polymers (PEG:dextran) show promise as tissue-specific surgical sealants. However, there is a significant loss of adhesion strength to soft tissues following PEG:dextran swelling, which may limit material ability to appose disjoined tissues and prevent leakage from surgical sites. We covalently incorporated the modified amino acid L-3,4-dihydroxyphenylalanine (L-DOPA) into PEG:dextran to enhance postswelling sealant performance. L-DOPA is an essential component of marine animal adhesive plaques and has been used to confer wet adhesion in synthetic materials. As both PEG:dextran cohesion and adhesion are mediated by aldehyde-amine interactions, L-DOPA side-groups make it a potent network modulator with potential to affect multiple material properties. Following 1-h submersion in aqueous media, PEG:dextran doped with 3 mM L-DOPA/M aldehyde on average swelled 50.3% less, had 287.4% greater stiffness, and had 53.6% greater functional adhesion strength compared to the neat hydrogel. Increased concentrations of L-DOPA up to 11 mM L-DOPA/M aldehyde similarly curtailed swelling and mitigated property loss with hydration, but sacrificed initial functional adhesion strength, material modulus, and biocompatibility. Taken together, these data support tailored L-DOPA conjugation as a promising approach to enhance the clinical performance of PEG:dextran sealants.
Acta Biomaterialia | 2013
Jahid Ferdous; Vijaya B. Kolachalama; Tarek Shazly
Fully erodible endovascular scaffolds are being increasingly considered for the treatment of obstructive arterial disease owing to their potential to mitigate long-term risks associated with permanent alternatives. While complete scaffold erosion facilitates vessel healing, generation and release of material degradation by-products from candidate materials such as poly-L-lactide (PLLA) may elicit local inflammatory responses that limit implant efficacy. We developed a computational framework to quantify how the compositional and structural parameters of PLLA-based fully erodible endovascular scaffolds affect degradation kinetics, erosion kinetics and the transient accumulation of material by-products within the arterial wall. Parametric studies reveal that, while some material properties have similar effects on these critical processes, others induce qualitatively opposing responses. For example, scaffold degradation is only mildly responsive to changes in either PLLA polydispersity or the initial degree of crystallinity, while the erosion kinetics is comparatively sensitive to crystallinity. Moreover, lactide doping can effectively tune both scaffold degradation and erosion, but a concomitant increase in local by-product accumulation raises concerns about implant safety. Optimized erodible endovascular scaffolds must precisely balance therapeutic function and biological response over the implant lifetime, where compositional and structural parameters will have differential effects on implant performance.
Philosophical Magazine | 2011
Z. Ilke Kalcioglu; Meng Qu; Kenneth E. Strawhecker; Tarek Shazly; Elazer R. Edelman; Mark R. VanLandingham; James F. Smith; Krystyn J. Van Vliet
For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate ‘impact’ events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.
Annals of Biomedical Engineering | 2014
Waleed O. Twal; Sandra C. Klatt; Keerthi Harikrishnan; Ebtesam Gerges; Marion A. Cooley; Thomas C. Trusk; Boran Zhou; Mohamed Gabr; Tarek Shazly; Susan M. Lessner; Roger R. Markwald; W. Scott Argraves
To meet demands of vascular reconstruction, there is a need for prosthetic alternatives to natural blood vessels. Here we explored a new conduit fabrication approach. Macroporous, gelatin microcarriers laden with human umbilical vein endothelial cells and aortic smooth muscle cells were dispensed into tubular agarose molds and found to adhere to form living tubular tissues. The ability of cellularized microcarriers to adhere to one another involved cellular and extracellular matrix bridging that included the formation of epithelium-like cell layers lining the lumenal and ablumenal surfaces of the constructs and the deposition of collagen and elastin fibers. The tubular tissues behaved as elastic solids, with a uniaxial mechanical response that is qualitatively similar to that of native vascular tissues and consistent with their elastin and collagen composition. Linearized measures of the mechanical response of the fabricated tubular tissues at both low and high strains were observed to increase with duration of static culture, with no significant loss of stiffness following decellularization. The findings highlight the utility of cellularized macroporous gelatin microcarriers as self-adhering building blocks for the fabrication of living tubular structures.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
David A. Prim; Boran Zhou; Adam Hartstone-Rose; Mark J. Uline; Tarek Shazly; John F. Eberth
Coronary artery bypass grafting (CABG) acutely disturbs the homeostatic state of the transplanted vessel making retention of graft patency dependent on chronic remodeling processes. The time course and extent to which remodeling restores vessel homeostasis will depend, in part, on the nature and magnitude of the mechanical disturbances induced upon transplantation. In this investigation, biaxial mechanical testing and histology were performed on the porcine left anterior descending artery (LAD) and analogs of common autografts, including the internal thoracic artery (ITA), radial artery (RA), great saphenous vein (GSV) and lateral saphenous vein (LSV). Experimental data were used to quantify the parameters of a structure-based constitutive model enabling prediction of the acute vessel mechanical response pre-transplantation and under coronary loading conditions. A novel metric Ξ was developed to quantify mechanical differences between each graft vessel in situ and the LAD in situ, while a second metric Ω compares the graft vessels in situ to their state under coronary loading. The relative values of these metrics among candidate autograft sources are consistent with vessel-specific variations in CABG clinical success rates with the ITA as the superior and GSV the inferior graft choices based on mechanical performance. This approach can be used to evaluate other candidate tissues for grafting or to aid in the development of synthetic and tissue engineered alternatives.
Annals of Biomedical Engineering | 2012
Tarek Shazly; Vijaya B. Kolachalama; Jahid Ferdous; James P. Oberhauser; Syed Hossainy; Elazer R. Edelman
Fully bioresorbable vascular scaffolds (BVS) are attractive platforms for the treatment of ischemic artery disease owing to their intrinsic ability to uncage the treated vessel after the initial scaffolding phase, thereby allowing for the physiological conditioning that is essential to cellular function and vessel healing. Although scaffold erosion confers distinct advantages over permanent endovascular devices, high transient by-product concentrations within the arterial wall could induce inflammatory and immune responses. To better understand these risks, we developed in this study an integrated computational model that characterizes the bulk degradation and by-product fate for a representative BVS composed of poly(l-lactide) (PLLA). Parametric studies were conducted to evaluate the relative impact of PLLA degradation rate, arterial remodeling, and metabolic activity on the local lactic acid (LA) concentration within arterial tissue. The model predicts that both tissue remodeling and PLLA degradation kinetics jointly modulate LA fate and suggests that a synchrony of these processes could minimize transient concentrations within local tissue. Furthermore, simulations indicate that LA metabolism is a relatively poor tissue clearance mechanism compared to convective and diffusive transport processes. Mechanistic understanding of factors governing by-product fate may provide further insights on clinical outcome and facilitate development of future generation scaffolds.
Advanced Healthcare Materials | 2013
Jane Wang; Kyle G. Boutin; Omar Abdulhadi; Lyndia D. Personnat; Tarek Shazly; Robert Langer; Colleen L. Channick; Jeffrey T. Borenstein
Airway stents are often used to maintain patency of the tracheal and bronchial passages in patients suffering from central airway obstruction caused by malignant tumors, scarring, and injury. Like most conventional medical implants, they are designed to perform their functions for a limited period of time, after which surgical removal is often required. Two primary types of airway stents are in general use, metal mesh devices and elastomeric tubes; both are constructed using permanent materials, and must be removed when no longer needed, leading to potential complications. This paper describes the development of process technologies for bioresorbable prototype elastomeric airway stents that would dissolve completely after a predetermined period of time or by an enzymatic triggering mechanism. These airway stents are constructed from biodegradable elastomers with high mechanical strength, flexibility and optical transparency. This work combines microfabrication technology with bioresorbable polymers, with the ultimate goal of a fully biodegradable airway stent ultimately capable of improving patient safety and treatment outcomes.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
Boran Zhou; Alexander Rachev; Tarek Shazly
The mechanical response of arteries under physiological loads can be delineated into passive and active components. The passive response is governed by the load-bearing constituents within the arterial wall, elastin, collagen, and water, while the active response is a result of vascular smooth muscle cell (SMC) contraction. In muscular blood vessels, such as the primary renal artery, high SMC wall content suggests an elevated importance of the active response in determining overall vessel behavior. This study is a continuation of our previous investigation, in which a four-fiber constitutive model of the passive response of the primary porcine renal artery was identified. Here we focus on the active response of this vessel, specifically in the case of maximal SMC contraction, and develop a constitutive model of the active stress-stretch relations. The results of this study demonstrate the existence of biaxial active stress in the vessel wall, and suggest the active mechanical response is a critical component of renal arterial performance.