Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tarikere L. Gururaja is active.

Publication


Featured researches published by Tarikere L. Gururaja.


Biochimica et Biophysica Acta | 1999

Candidacidal activity prompted by N-terminus histatin-like domain of human salivary mucin (MUC7)1

Tarikere L. Gururaja; Joseph H Levine; Duy T Tran; Gowda A. Naganagowda; Kalaiyarasi Ramalingam; Narayanan Ramasubbu; Michael J. Levine

Histidine-rich peptides (histatins, Hsn) in saliva are thought to provide a non-immune defense against Candida albicans. Sequence homology search of the human salivary mucin, MUC7, against histatins revealed a domain at the N-terminus (R3-Q17) having 53% identity to Hsn-5. To determine its candidacidal activity, this 15 residue basic histidine-rich domain of MUC7 (I) was prepared by solid-phase Fmoc chemistry. Various N- and C-terminal protected derivatives of I were also synthesized to correlate the effect of peptide overall charge in exhibiting cidal potency. Candidacidal activity measurement of I and its variants showed considerable ED50 values (effective dosage required to kill 50% of candida cells), albeit greater than Hsn-5 (ED50 approximately 4-6 microM). Of the various analogs tested, N-terminal free acid (I, ED50 approximately 40 microM) and amide (V, ED50 approximately 16 microM) exhibited appreciable candidacidal activities suggesting the possible role of peptide net charge in cidal action. Blocking of N-terminus with a bulky octanoyl group showed only marginal effect on the cidal activity of I or V, indicating that hydrophobicity of these synthetic constructs may not be important for exerting such activities. Membrane-induced conformational transition from random coil to helical structures of all the test peptides implied their tendency to adapt order structures at the lipid-membrane interface similar to that of Hsn-5. However, comparison of propensity for helical structure formation vs. ED50 indicated that cidal potency of MUC7 Hsn-like peptides depends largely on electrostatic interactions irrespective of secondary structural elements. Delineation of solution structure of the most active peptide (V) by 2D-NMR revealed essentially a non-structured conformation in aqueous medium, which further supported the fact that the peptide helical structure may not be a prerequisite for posing candidacidal activity. The formation of smaller truncated peptides and/or Hsn-like fragments on proteolytic degradation of intact MUC7 in the presence of oral flora provided indirect evidence that mucin could serve as a backup candidacidal agent to salivary Hsn.


Journal of Cancer Research and Clinical Oncology | 2010

Preclinical characterization of Aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen

John R. McLaughlin; Vadim Markovtsov; Hui Li; Steve Wong; Marina Gelman; Yanhong Zhu; Christian Franci; D. Wayne Lang; Erlina Pali; Joe Lasaga; Caroline Low; Feifei Zhao; Betty Y. Chang; Tarikere L. Gururaja; Weiduan Xu; Muhammad Baluom; David J. Sweeny; David Carroll; Arvinder Sran; Sambaiah Thota; Manjeet Parmer; Angela Romane; George R. Clemens; Elliott B. Grossbard; Kunbin Qu; Yonchu Jenkins; Taisei Kinoshita; Vanessa Taylor; Sacha Holland; Ankush Argade

PurposeAurora kinases play a key role in mitotic progression. Over-expression of Aurora kinases is found in several human cancers and correlated with histological malignancy and clinical outcomes. Therefore, Aurora kinase inhibitors should be useful in the treatment of cancers.MethodsCell-based screening methods have an advantage over biochemical approaches because hits can be optimized to inhibit targets in the proper intracellular context. We developed a novel Aurora kinase inhibitor R763/AS703569 using an image-based phenotypic screen. The anti-proliferative effect was examined in a panel of tumor cell lines and primary cells. The efficacy was determined in a broad panel of xenograft models.ResultsR763/AS703569 inhibits Aurora kinases, along with a limited number of other kinases including FMS-related tyrosine kinase 3 (FLT3), and has potent anti-proliferative activity against many cell types accompanying unique phenotypic changes such as enlarged cell size, endoreduplication and apoptosis. The endoreduplication cycle induced by R763/AS703569 was irreversible even after the compound was withdrawn from the culture. Oral administration of R763/AS703569 demonstrated marked inhibition of tumor growth in xenograft models of pancreatic, breast, colon, ovarian, and lung tumors and leukemia. An acute myeloid leukemia cell line MV4-11, which carries a FLT3 internal tandem duplication mutation, is particularly sensitive to R763/AS703569 in vivo.ConclusionsR763/AS703569 is a potent inhibitor of Aurora kinases and exhibited significant anti-proliferative activity against a wide range of tumor cells both in vitro and in vivo. Inhibition of Aurora kinases has the potential to be a new addition to the treatment of cancers.


Journal of Biomolecular Structure & Dynamics | 1998

Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations.

Gowda A. Naganagowda; Tarikere L. Gururaja; Michael J. Levine

Membrane-induced solution structure of human salivary statherin, a 43 amino acid residue acidic phosphoprotein, has been investigated by two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. NMR assignments and structural analysis of this phosphoprotein was accomplished by analyzing the pattern of sequential and medium range NOEs, alphaCH chemical shift perturbations and deuterium exchange measurements of the amide proton resonances. The NMR data revealed three distinct structural motifs in the molecule: (1) an alpha-helical structure at the N-terminal domain comprising Asp1-Tyr16, (2) a polyproline type II (PPII) conformation predominantly occurring at the middle proline-rich domain spanning Gly19-Gln35, and (3) a 3(10)-helical structure at the C-terminal Pro36-Phe43 sequence. Presence of a few weak dalphaN(i,i+2) NOEs suggests that N-terminus also possesses minor population of 3(10)-helical conformation. Of the three secondary structural elements, helical structure formed by the N-terminal residues, Asp1-Ile11 appears to be more rigid as observed by the relatively very slow exchange of amide hydrogens of Glu5-Ile11. 31P NMR experiments clearly indicated that N-terminal domain of statherin exists mainly in disordered state in water whereas, upon addition of structure stabilizing co-solvent, 2,2,2-trifluorethanol (TFE), it showed a strong propensity for helical conformation. Calcium ion interaction studies suggested that the disordered N-terminal region encompassing the two vicinal phosphoserines is essential for the binding of calcium ions in vivo. Results from the circular dichroism (CD) experiments were found to be consistent with and complimentary to the NMR data and provided an evidence that non-aqueous environment such as TFE, could induce the protein to fold into helical conformation. The findings that the statherin possesses blended solvent sensitive secondary structural elements and the requirement of non-structured N-terminal region under aqueous environment in calcium ion interaction may be invaluable to understand various physiological functions of statherin in the oral fluid.


Glycoconjugate Journal | 1998

Structural features of the human salivary mucin, MUC7.

Tarikere L. Gururaja; Narayanan Ramasubbu; Paloth Venugopalan; Molakala S. Reddy; Kalaiyarasi Ramalingam; Michael J. Levine

Human salivary mucin (MUC7) is characterized by a single polypeptide chain of 357 aa. Detailed analysis of the derived MUC7 peptide sequence reveals five distinct regions or domains: (1) an N-terminal basic, histatin-like domain which has a leucine-zipper segment, (2) a moderately glycosylated domain, (3) six heavily glycosylated tandem repeats each consisting of 23 aa, (4) another heavily glycosylated MUC1- and MUC2-like domain, and (5) a C-terminal leucine-zipper segment. Chemical analysis and semi-empirical prediction algorithms for O-glycosylation suggested that 86/105 (83%) Ser/Thr residues were O-glycosylated with the majority located in the tandem repeats. The high (∼25%) proline content of MUC7 including 19 diproline segments suggested the presence of polyproline type structures. CD studies of natural and synthetic diproline-rich peptides and glycopeptides indicated that polyproline type structures do play a significant role in the conformational dynamics of MUC7. In addition, crystal structure analysis of a synthetic diproline segment (Boc-Ala-Pro-OBzl) revealed a polyproline type II extended structure. Collectively, the data indicate that the polyproline type II structure, dispersed throughout the tandem repeats, may impart a stiffening of the backbone and could act in consort with the glycosylated segments to keep MUC7 in a semi-rigid, rod shaped conformation resembling a ‘bottle-brush’ model.


Journal of Protein Chemistry | 2001

Characterization and Use of Green Fluorescent Proteins from Renilla mulleri and Ptilosarcus guernyi for the Human Cell Display of Functional Peptides

Beau Robert Peelle; Tarikere L. Gururaja; Donald G. Payan; D. C. Anderson

Green fluorescent protein (GFP) is useful as an intracellular scaffold for the display of random peptide libraries in yeast. GFPs with a different sequence from Aequorea victoria have recently been identified from Renilla mulleri and Ptilosarcus gurneyi. To examine these proteins as intracellular scaffolds for peptide display in human cells, we have determined the expression level of retrovirally delivered human codon-optimized versions in Jurkat-E acute lymphoblastic leukemia cells using fluorescence activated cell sorting and Western blots. Each wild type protein is expressed at 40% higher levels than A. victoria mutants optimized for maximum fluorescence. We have compared the secondary structure and stability of these GFPs with A. victoria GFP using circular dichroism (CD). All three GFPs essentially showed a perfect β-strand conformation and their melting temperatures (Tm) are very similar, giving an experimental evidence of a similar overall structure. Folded Renilla GFP allows display of an influenza hemagglutinin epitope tag in several internal insertion sites, including one which is not permissive for such display in Aequorea GFP, giving greater flexibility in peptide display options. To test display of a functional peptide, we show that the SV-40 derived nuclear localization sequence PPKKKRKV, when inserted into two different potential loops, results in the complete localization of Renilla GFP to the nucleus of human A549 cells.


Chemistry & Biology | 2000

A novel artificial loop scaffold for the noncovalent constraint of peptides.

Tarikere L. Gururaja; Shanaiah Narasimhamurthy; Donald G. Payan; D. C. Anderson

BACKGROUND Few examples exist of peptides of < 35 residues that form a stable tertiary structure without disulfide bonds. A method for stabilization and noncovalent constraint of relatively short peptides may allow the construction and use of intracellular peptide libraries containing protein minidomains. RESULTS We have examined a novel method for the noncovalent constraint of peptides by attaching the peptide EFLIVKS (single-letter amino acid code), which forms dimers, to the amino and carboxyl termini of different peptide inserts. An 18 residue random coil taken from the inhibitor loop of barley chymotrypsin inhibitor 2 was inserted between the peptides to produce a 32-mer minidomain that is attacked only slowly by elastase, has numerous slowly exchanging protons, contains a high beta-structure content and has a T(m) above 37 degrees C. A point mutation disrupting the hydrophobic interior in both dimerizing peptides causes a loss of all slowly exchanging protons and of secondary structure. Adding specific charged residues to each terminus substantially increased the T(m), as did point mutants designed to add interdimerizer ion pairs. Three flexible epitope tag inserts and a nonamer insert do not appear to be folded in a stable structure by EFLIVKS. The properties of two peptides selected for expression in HeLa cells suggest they do form a stable tertiary structure. CONCLUSIONS Attaching short dimerizing peptides to both the amino and carboxyl termini of several 18-mer peptides appears to create stable monomeric tertiary structures. Mutations in the dimerizers can either destabilize or significantly stabilize a standard 18-mer insert. Dimerizing peptides flanking random insert sequences could be used as a strategy to generate heterogeneous peptide libraries with both extended and folded members.


The FASEB Journal | 2014

Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction

Ira J. Smith; Guillermo L. Godinez; Baljit Singh; Kelly McCaughey; Raniel R. Alcantara; Tarikere L. Gururaja; Melissa S. Ho; Henry N. Nguyen; Annabelle M. Friera; Kathy White; John R. McLaughlin; Derek Hansen; Jason Romero; Kristen A. Baltgalvis; Mark D. Claypool; Wei Li; Wayne Lang; George C. Yam; Marina Gelman; Rongxian Ding; Stephanie Yung; Daniel P. Creger; Yan Chen; Rajinder Singh; Ashley J. Smuder; Michael P. Wiggs; Oh-Sung Kwon; Kurt J. Sollanek; Scott K. Powers; Esteban Masuda

Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV‐mediated diaphragm wasting and weakness in rats. CMV‐induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.—Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.‐S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation‐induced diaphragm dysfunction. FASEB J. 28, 2790–2803 (2014). www.fasebj.org


Clinical Cancer Research | 2006

R-253 Disrupts Microtubule Networks in Multiple Tumor Cell Lines

Tarikere L. Gururaja; Dane Goff; Taisei Kinoshita; Eileen Goldstein; Stephanie Yung; John R. McLaughlin; Erlina Pali; Jianing Huang; Rajinder Singh; Sarkiz Daniel-Issakani; Yasumichi Hitoshi; Robin Cooper; Donald G. Payan

Purpose: The design and development of synthetic small molecules to disrupt microtubule dynamics is an attractive therapeutic strategy for anticancer drug discovery research. Loss of clinical efficacy of many useful drugs due to drug resistance in tumor cells seems to be a major hurdle in this endeavor. Thus, a search for new chemical entities that bind tubulin, but neither are a substrate of efflux pump, P-glycoprotein 170/MDR1, nor cause undesired side effects, would potentially increase the therapeutic index in certain cancer treatments. Experimental Design: A high-content cell-based screen of a compound library led to the identification of a new class of compounds belonging to a thienopyrimidine series, which exhibited significant antitumor activities. On structure-activity relationship analysis, R-253 [N-cyclopropyl-2-(6-(3,5-dimethylphenyl)thieno[3,2-d]pyrimidin-4-yl)hydrazine carbothioamide] emerged as a potent antiproliferative agent (average EC50, 20 nmol/L) when examined in a spectrum of tumor cell lines. Results: R-253 is structurally unique and destabilizes microtubules both in vivo and in vitro. Standard fluorescence-activated cell sorting and Western analyses revealed that the effect of R-253 on cell growth was associated with cell cycle arrest in mitosis, increased select G2-M checkpoint proteins, and apoptosis. On-target activity of R-253 on microtubules was further substantiated by immunofluorescence studies and selected counter assays. R-253 competed with fluorescent-labeled colchicine for binding to tubulin, indicating that its binding site on tubulin could be similar to that of colchicine. R-253 neither is a substrate of P-glycoprotein 170/MDR1 nor is cytotoxic to nondividing human hepatocytes. Conclusion: Both biochemical and cellular mechanistic studies indicate that R-253 could become a promising new tubulin-binding drug candidate for treating various malignancies.


Methods in Enzymology | 2005

A Homogeneous FRET Assay System for Multiubiquitin Chain Assembly and Disassembly

Tarikere L. Gururaja; Todd Pray; Raymond Lowe; Guoqiang Dong; Jianing Huang; Sarkiz Daniel-Issakani; Donald G. Payan

Ubiquitin (Ub, 76aa) is a small highly conserved protein present universally in eukaryotic cells. Covalent attachment of (Ub)(n) to target proteins is a well-known posttranslational modification that has been implicated in a wide array of cellular processes including cell biogenesis. Ubiquitin polymerization by the Ub activation-conjugation-ligation cascade and the reverse disassembly process catalyzed by Ub isopeptidases largely regulate substrate protein targeting to the 26S proteasome. Ub chains of four or more subunits attached by K48 isopeptide linkages have been shown to be necessary for the 26S proteasome association and subsequent degradation of protein molecules. To better understand this protein degradation event, it is important to develop Ub polymerization and depolymerization assays that monitor every reaction step involved in Ub attachment to, or detachment from, substrate protein molecules. In this chapter, we describe homogeneous, easy-to-use, nonradioactive, complementary continuous fluorescence assays capable of monitoring the kinetics of Ub chain formation by E3 Ub ligases, and their hydrolysis by isopeptidases, which rely on mixing a 1:1 population of fluorophore-labeled Ub molecules containing a FRET pair. The proximity of fluorescein (donor) and tetramethylrhodamine (acceptor) in Ub polymers results in fluorescein quenching on ligase-induced Ub chain assembly. Conversely, a dramatic enhancement of fluorescein emission was observed on Ub chain disassembly because of isopeptidase activity. These assays thus provide a valuable tool for monitoring Ub ligase and isopeptidase activities using authentic Ub monomers and polymers as substrates. Screening of a large number of small molecule compound libraries in a high-throughput fashion is achievable, warranting further optimization of these assays.


Biopolymers | 2001

Synthesis and conformational features of human salivary mucin C-terminal derived peptide epitope carrying Thomsen–Friedenreich antigen: Implications for its role in self-association

Janagani Satyanarayana; Tarikere L. Gururaja; Shanaiah Narasimhamurthy; Gowda A. Naganagowda; Michael J. Levine

The conformational features of a chemically synthesized 23-residue glycopeptide construct (II) carrying Gal-beta-(1,3)-alpha-GalNAc and its deglycosylated counterpart (I; Gal: galactose; GalNAc: N-acetyl galactosamine) derived from the C-terminal domain of human salivary mucin (MUC7) were investigated using CD spectroscopy as well as molecular dynamic simulation studies. The corresponding deglycosylated peptide (I) was essentially used to compare and study the influence of the sugar moiety on peptide backbone conformation. CD measurements in aqueous medium revealed that the apopeptide (I) contains significant populations of beta-strand conformation while the glycopeptide (II) possess, partly, helical structure. This transition in the secondary structure upon glycosylation from beta-strand to helical conformation clearly demonstrates that the carbohydrate moiety exerts significant influence on the peptide backbone. On the other hand, upon titrating structure stabilizing organic cosolvent, trifluoroethanol (TFE), both the peptides showed pronounced helical structure. However, the propensity for helical structure formation is less pronounced in glycopeptide compared to apopeptide suggesting that the bulky carbohydrate moiety possibly posing steric hindrance to the formation of TFE-induced secondary structure in II. Energy-minimized molecular model for the glycopeptide revealed that the preferred helix conformation in aqueous medium appears to be stabilized by the hydrogen-bonded salt bridge like interaction between carbohydrate --OH and Lys-10 side--N(+)H(3) group. Size exclusion chromatographic analysis of both (glyco)peptides I and II showed an apparent Kd of 2.3 and 0.52 microM, respectively, indicating that glycopeptide (II) has greater tendency for self-association. Due to high amphipathic character as well as due to the presence of a leucine zipper motif ( approximately LLYMKNLL approximately ), which is known to increase the stability at the coiled-coil interface via hydrophobic interactions, we propose therefore that, this domain could be one of the key elements involved in the self-association of intact MUC7 in vivo. Profound conformational effects governed by glycosylation exemplified herein could have implications in determining structure-function relationships of mucin glycoproteins.

Collaboration


Dive into the Tarikere L. Gururaja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajinder Singh

Guru Nanak Dev University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betty Y. Chang

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge