Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tariq A. Tahir is active.

Publication


Featured researches published by Tariq A. Tahir.


Journal of Biological Chemistry | 2004

The Dual Nature of the Wheat Xylanase Protein Inhibitor XIP-I: STRUCTURAL BASIS FOR THE INHIBITION OF FAMILY 10 AND FAMILY 11 XYLANASES.

Françoise Payan; Philippe Leone; Sophie Porciero; Caroline S.M. Furniss; Tariq A. Tahir; Gary Williamson; Anne Durand; Paloma Manzanares; Harry J. Gilbert; Nathalie Juge; Alain Roussel

The xylanase inhibitor protein I (XIP-I) from wheat Triticum aestivum is the prototype of a novel class of cereal protein inhibitors that inhibit fungal xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). The crystal structures of XIP-I in complex with Aspergillus nidulans (GH10) and Penicillium funiculosum (GH11) xylanases have been solved at 1.7 and 2.5 Å resolution, respectively. The inhibition strategy is novel because XIP-I possesses two independent enzyme-binding sites, allowing binding to two glycoside hydrolases that display a different fold. Inhibition of the GH11 xylanase is mediated by the insertion of an XIP-I Π-shaped loop (Lα4β5) into the enzyme active site, whereas residues in the helix α7 of XIP-I, pointing into the four central active site subsites, are mainly responsible for the reversible inactivation of GH10 xylanases. The XIP-I strategy for inhibition of xylanases involves substrate-mimetic contacts and interactions occluding the active site. The structural determinants of XIP-I specificity demonstrate that the inhibitor is able to interact with GH10 and GH11 xylanases of both fungal and bacterial origin. The biological role of the xylanase inhibitors is discussed in light of the present structural data.


Journal of Biological Chemistry | 2007

Regulated Proteolytic Processing of Tie1 Modulates Ligand Responsiveness of the Receptor-tyrosine Kinase Tie2

Marie B. Marron; Harprit Singh; Tariq A. Tahir; Jais Kavumkal; Hak-Zoo Kim; Gou Young Koh; Nicholas P.J. Brindle

Regulated ectodomain shedding followed by intramembrane proteolysis has recently been recognized as important in cell signaling and for degradation of several type I transmembrane proteins. The receptor-tyrosine kinase Tie1 is known to undergo ectodomain cleavage generating a membrane-tethered endodomain. Here we show Tie1 is a substrate for regulated intramembrane proteolysis. After Tie1 ectodomain cleavage the newly formed 45-kDa endodomain undergoes additional proteolytic processing mediated by γ-secretase to generate an amino-terminal-truncated 42-kDa fragment that is subsequently degraded by proteasomal activity. This sequential processing occurs constitutively and is stimulated by phorbol ester and vascular endothelial growth factor. To assess the biological significance of regulated Tie1 processing, we analyzed its effects on angiopoietin signaling. Activation of ectodomain cleavage causes loss of phosphorylated Tie1 holoreceptor and generation of phosphorylated receptor fragments in the presence of cartilage oligomeric protein angiopoietin 1. A key function of γ-secretase is in preventing accumulation of these phosphorylated fragments. We also find that regulated Tie1 processing modulates ligand responsiveness of the Tie-1-associated receptor Tie2. Activation of Tie1 ectodomain cleavage increases cartilage oligomeric protein angiopoietin 1 activation of Tie2. This correlates with increased ability of Tie2 to bind ligand after shedding of the Tie1 extracellular domain. A similar enhancement of ligand activation of Tie2 is seen when Tie1 expression is suppressed by RNA interference. Together these data indicate that Tie1, via its extracellular domain, limits the ability of ligand to bind and activate Tie2. Furthermore the data suggest that regulated processing of Tie1 may be an important mechanism for controlling signaling by Tie2.


Cellular Signalling | 2010

Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface.

Tania M. Hansen; Harprit Singh; Tariq A. Tahir; Nicholas P.J. Brindle

Angiopoietin-1 (Ang1) and Ang2 are ligands for the receptor tyrosine kinase Tie2. Structural data suggest that the two ligands bind Tie2 similarly. However, in endothelial cells Ang1 activates Tie2 whereas Ang2 can act as an apparent antagonist. In addition, each ligand exhibits distinct kinetics of release following binding. These observations suggest that additional factors influence function and binding of angiopoietins with receptors in the cellular context. Previous work has shown that Ang1 binding and activation of Tie2 are inhibited by Tie1, a related receptor that complexes with Tie2 in cells. In this study we have investigated binding of Ang1 and Ang2 to Tie2 in endothelial cells. In contrast to Ang1, binding of Ang2 to Tie2 was found to be not affected by Tie1. Neither PMA-induced Tie1 ectodomain cleavage nor suppression of Tie1 expression by siRNA affected the ability of Ang2 to bind Tie2. Analysis of the level of Tie1 co-immunoprecipitating with angiopoietin-bound Tie2 demonstrated that Ang2 can bind Tie2 in Tie2:Tie1 complexes whereas Ang1 preferentially binds non-complexed Tie2. Stimulation of Tie1 ectodomain cleavage did not increase the agonist activity of Ang2 for Tie2. Similarly, the Tie2-agonist activity of Ang2 was not affected by siRNA suppression of Tie1 expression. Consistent with previous reports, loss of Tie1 ectodomain enhanced the agonist activity of Ang1 for Tie2. Importantly, Ang2 was still able to antagonize the elevated Ang1-activation of Tie2 that occurs on Tie1 ectodomain loss. Together these data demonstrate that Ang1 and Ang2 bind differently to Tie2 at the cell surface and this is controlled by Tie1. This differential regulation of angiopoietin binding allows control of Tie2 activation response to Ang1 without affecting Ang2 agonist activity and maintains the ability of Ang2 to antagonize even the enhanced Ang1 activation of Tie2 that occurs on loss of Tie1 ectodomain. This provides a mechanism by which signalling through Tie2 can be modified by stimuli in the cellular microenvironment.


Biochemical Society Transactions | 2011

Molecular control of angiopoietin signalling.

Harprit Singh; Tariq A. Tahir; Deborah O.A. Alawo; Eyad Issa; Nicholas P.J. Brindle

The angiopoietins act through the endothelial receptor tyrosine kinase Tie2 to regulate vessel maturation in angiogenesis and control quiescence and stability of established vessels. The activating ligand, Ang1 (angiopoietin-1), is constitutively expressed by perivascular cells, and the ability of endothelial cells to respond to the ligand is controlled at the level of the Ang1 receptor. This receptor interacts with the related protein Tie1 on the cell surface, and Tie1 inhibits Ang1 signalling through Tie2. The responsiveness of endothelium to Ang1 is determined by the relative levels of Tie2 and the inhibitory co-receptor Tie1 in the cells. Tie1 undergoes regulated ectodomain cleavage which is stimulated by a range of factors including VEGF (vascular endothelial growth factor), inflammatory cytokines and changes in shear stress. Ectodomain cleavage of Tie1 relieves inhibition of Tie2 and enhances Ang1 signalling. This mechanism regulates Ang1 signalling without requiring changes in the level of the ligand and allows Ang1 signalling to be co-ordinated with other signals in the cellular environment. Regulation of signalling at the level of receptor responsiveness may be an important adaptation in systems in which an activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.


Cellular Signalling | 2014

The RNA Binding Protein hnRNP-K Mediates Post -Transcriptional Regulation of Uncoupling Protein-2 by Angiopoietin-1

Tariq A. Tahir; Harprit Singh; Nicholas P.J. Brindle

Angiopoietin-1 (Ang1) is a ligand for the receptor tyrosine kinase Tie2 and has key roles in the development of the vascular system and vascular protection. In a screen to define signalling pathways regulated by Ang1 in endothelial cells we found the RNA-binding protein hnRNP-K to be phosphorylated in response to Ang1. The ligand stimulated both tyrosine phosphorylation of hnRNP-K and recruitment of the tyrosine kinase Src to the RNA-binding protein. In endothelial cells hnRNP-K was found bound to mRNA encoding the mitochondrial protein uncoupling protein-2 (UCP2). Ang1 stimulation of cells resulted in the release of UCP2 mRNA from hnRNP-K. Using in vitro assays we confirmed direct binding between hnRNP-K and UCP2 mRNA. Furthermore Src induced phosphorylation of purified hnRNP-K and prevented UCP2 mRNA binding. Tyrosine 458 in the RNA-binding protein was found to be required for suppression of UCP2 mRNA binding by Src phosphorylation. In addition to releasing UCP2 mRNA from hnRNP-K, Ang1 induced an increase in UCP2 protein expression in endothelial cells without affecting total UCP2 mRNA levels. Consistent with the known effects of UCP2 to suppress generation of reactive oxygen species, Ang1 limited ROS production in endothelium stimulated with tumour necrosis factor-α. Taken together these data suggest that UCP2 mRNA is present in endothelial cells bound to hnRNP-K, which holds it in a translationally inactive state, and that Ang1 stimulates Src interaction with hnRNP-K, phosphorylation of the RNA-binding protein, release of these transcripts and upregulation of UCP2 protein expression. This study demonstrates a new mechanism for post-transcriptional regulation of UCP2 by the vascular protective ligand Ang1. The ability to rapidly upregulate UCP2 protein expression may be important in protecting endothelial cells from excessive generation of potentially damaging reactive oxygen species.


Scientific Reports | 2017

Regulation of Angiopoietin Signalling by Soluble Tie2 Ectodomain and Engineered Ligand Trap

Deborah O.A. Alawo; Tariq A. Tahir; Marlies Fischer; Declan G. Bates; Svetlana R. Amirova; Nicholas P.J. Brindle

Angiopoietin-1 (Angpt1) is a glycoprotein ligand important for maintaining the vascular system. It signals via a receptor tyrosine kinase expressed on the surface on endothelial cells, Tie2. This receptor can undergo regulated ectodomain cleavage that releases the ligand-binding domain (sTie2) into the circulation. The concentration of sTie2 is increased in a range of conditions, including peripheral arterial disease and myocardial infarction, where it has been suggested to bind and block Angpt1 resulting in vascular dysfunction. Here we use a joint mathematical modelling and experimental approach to assess the potential impact of sTie2 on the ability of Angpt1 to signal. We find that the concentrations of sTie2 relative to Angpt1 required to suppress signalling by the ligand are more than ten–fold higher than those ever seen in normal or disease conditions. In contrast to the endogenous sTie2, an engineered form of sTie2, which presents dimeric ligand binding sites, inhibits Angpt1 signalling at seventy-fold lower concentrations. While loss of Tie2 ectodomain can suppress Angpt1 signalling locally in the cells in which the receptor is lost, our study shows that the resulting increase in circulating sTie2 is unlikely to affect Angpt1 activity elsewhere in the body.


Biochimica et Biophysica Acta | 2004

Potential role of glycosidase inhibitors in industrial biotechnological applications

Jens Frisbæk Sørensen; Karsten Matthias Kragh; Ole Sibbesen; Jan A. Delcour; Hans Goesaert; Birte Svensson; Tariq A. Tahir; Joachim Brufau; Anna M Perez-Vendrell; Daniella Bellincampi; Renato D'Ovidio; Laura Camardella; Alfonso Giovane; Estelle Bonnin; Nathalie Juge


Journal of Biological Chemistry | 2002

Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger.

Tariq A. Tahir; Jean-Guy Berrin; Ruth Flatman; Alain Roussel; Peter Roepstorff; Gary Williamson; Nathalie Juge


Biochimica et Biophysica Acta | 2004

The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors.

Alexandre Brutus; Claude Villard; Anne Durand; Tariq A. Tahir; Caroline S.M. Furniss; Antoine Puigserver; Nathalie Juge; Thierry Giardina


Fems Microbiology Letters | 2004

Functional importance of Asp37 from a family 11 xylanase in the binding to two proteinaceous xylanase inhibitors from wheat

Tariq A. Tahir; Anne Durand; Kurt Gebruers; Alain Roussel; Gary Williamson; Nathalie Juge

Collaboration


Dive into the Tariq A. Tahir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Roussel

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge