Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tarja Kokkola is active.

Publication


Featured researches published by Tarja Kokkola.


European Journal of Pharmacology | 1996

A rhodopsin-based model for melatonin recognition at its G protein-coupled receptor

Cecil Navajas; Tarja Kokkola; Antti Poso; Nina Honka; Jukka Gynther; Jarmo T. Laitinen

The recent elucidation of the primary structures of different melatonin receptors as well as the deduction of the secondary structure of rhodopsin has allowed us to construct a model for melatonin recognition at its G protein-coupled receptor. To achieve this, we have used the quantum mechanics method Austin model 1 to fully optimize the structures of melatonin and several analogs. We also synthesized three compounds and used the three-dimensional analysis comparative molecular field analysis (CoMFA) to generate a model for the structure-activity relationships of melatonin and 27 melatonin-like compounds. This model predicted with good accuracy the affinities of the synthesized compounds for the melatonin receptor. We propose that recognition of the functional moieties of melatonin occurs through specific interaction of these moieties with fully conserved amino acid residues present in transmembrane helices V, VI and VII of the melatonin receptor. These residues are not found in other members of the G protein-coupled receptor family. The rhodopsin-based model can explain the importance of some structural features of melatonin and related active compounds.


Free Radical Research | 2010

An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples

Nicolle Breusing; Tilman Grune; Luka Andrisic; Mustafa Atalay; Grzegorz Bartosz; Fiorella Biasi; Suzana Borović; Laura Bravo; Isidre Casals; Rosario Casillas; Anca Dinischiotu; Joanna Drzewinska; Heidemarie Faber; Norsyahida Mohd Fauzi; Agnieszka Gajewska; Juan Gambini; Daniela Gradinaru; Tarja Kokkola; Antonín Lojek; Wojciech Łuczaj; Denisa Margina; Cinzia Mascia; Raquel Mateos; Andreas Meinitzer; Maria Teresa Mitjavila; Lidija Mrakovcic; Maria Cristina Munteanu; Martina Podborská; Giuseppe Poli; Paulina Sicińska

Abstract Lipid peroxidation products like malondialdehyde, 4-hydroxynonenal and F2-isoprostanes are widely used as markers of oxidative stress in vitro and in vivo. This study reports the results of a multi-laboratory validation study by COST Action B35 to assess inter-laboratory and intra-laboratory variation in the measurement of lipid peroxidation. Human plasma samples were exposed to UVA irradiation at different doses (0, 15 J, 20 J), encoded and shipped to 15 laboratories, where analyses of malondialdehyde, 4-hydroxynonenal and isoprostanes were conducted. The results demonstrate a low within-day-variation and a good correlation of results observed on two different days. However, high coefficients of variation were observed between the laboratories. Malondialdehyde determined by HPLC was found to be the most sensitive and reproducible lipid peroxidation product in plasma upon UVA treatment. It is concluded that measurement of malondialdehyde by HPLC has good analytical validity for inter-laboratory studies on lipid peroxidation in human EDTA-plasma samples, although it is acknowledged that this may not translate to biological validity.


British Journal of Pharmacology | 2005

Identification of WIN55212-3 as a competitive neutral antagonist of the human cannabinoid CB2 receptor

Juha R. Savinainen; Tarja Kokkola; Outi M. H. Salo; Antti Poso; Tomi Järvinen; Jarmo T. Laitinen

1 Several G protein‐coupled receptors (GPCRs), including cannabinoid CB1 and CB2 receptors, show constitutive activity under heterologous expression. Such a tonic response is generated in the absence of an activating ligand, and can be inhibited by inverse agonists. Neutral antagonists, however, are silent at such receptors, but can reverse both agonist and inverse agonist responses. To date, no neutral antagonist for the CB2 receptor has been reported. 2 Here, by monitoring receptor‐dependent G protein activation, we demonstrate that WIN55212‐3 acts as a neutral antagonist at the human CB2 (hCB2) receptor. WIN55212‐3 alone, at concentrations 10−4 M, behaved as a silent ligand exhibiting no agonist or inverse agonist activity. However, WIN55212‐3 competitively antagonized cannabinoid agonist CP‐55,940‐stimulated responses (pA2 6.1). Importantly, the inverse agonism evoked by SR144528 in hCB2 was dose‐dependently reversed by WIN55212‐3 (pEC50 5.3±0.2), indicating true neutral antagonist behavior. 3 Furthermore, WIN55212‐3 also antagonized CB1 receptor signaling in a competitive manner (pA2 5.6), but behaved as a partial inverse agonist (pIC50 5.5±0.1) at the constitutively active human CB1. 4 Additionally, WIN55212‐3 antagonized signaling of the human melatonin MT1 receptor, with modest activity at the human muscarinic M4 receptor, but it was inactive towards several other GPCRs. 5 These data identify WIN55212‐3 as a true neutral hCB2 receptor antagonist. WIN55212‐3 offers a valuable tool for further characterization of ligand activities at the CB2 receptor and may serve as a lead compound in further efforts to develop more potent and selective neutral CB2 receptor antagonists.


BMC Cell Biology | 2005

S-Nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner

Tarja Kokkola; Juha R. Savinainen; Kati S. Mönkkönen; Montse Durán Retamal; Jarmo T. Laitinen

BackgroundRecent studies indicate that the G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO) and S-nitrosothiols (RSNOs). To gain a broader view into the way that receptor-dependent G protein activation – an early step in signal transduction – might be affected by RSNOs, we have studied several receptors coupling to the Gi family of G proteins in their native cellular environment using the powerful functional approach of [35S]GTPγS autoradiography with brain cryostat sections in combination with classical G protein activation assays.ResultsWe demonstrate that RSNOs, like S-nitrosoglutathione (GSNO) and S-nitrosocysteine (CysNO), can modulate GPCR signaling via reversible, thiol-sensitive mechanisms probably involving S-nitrosylation. RSNOs are capable of very targeted regulation, as they potentiate the signaling of some receptors (exemplified by the M2/M4 muscarinic cholinergic receptors), inhibit others (P2Y12 purinergic, LPA1lysophosphatidic acid, and cannabinoid CB1 receptors), but may only marginally affect signaling of others, such as adenosine A1, μ-opioid, and opiate related receptors. Amplification of M2/M4 muscarinic responses is explained by an accelerated rate of guanine nucleotide exchange, as well as an increased number of high-affinity [35S]GTPγS binding sites available for the agonist-activated receptor. GSNO amplified human M4 receptor signaling also under heterologous expression in CHO cells, but the effect diminished with increasing constitutive receptor activity. RSNOs markedly inhibited P2Y12 receptor signaling in native tissues (rat brain and human platelets), but failed to affect human P2Y12 receptor signaling under heterologous expression in CHO cells, indicating that the native cellular signaling partners, rather than the P2Y12 receptor protein, act as a molecular target for this action.ConclusionThese in vitro studies show for the first time in a broader general context that RSNOs are capable of modulating GPCR signaling in a reversible and highly receptor-specific manner. Given that the enzymatic machinery responsible for endogenous NO production is located in close proximity with the GPCR signaling complex, especially with that for several receptors whose signaling is shown here to be modulated by exogenous RSNOs, our data suggest that GPCR signaling in vivo is likely to be subject to substantial, and highly receptor-specific modulation by NO-derived RSNOs.


Journal of Medicinal Chemistry | 2014

Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells.

Tina Seifert; Marcus Malo; Tarja Kokkola; Karin Engen; Maria Fridén-Saxin; Erik A.A. Wallén; Maija Lahtela-Kakkonen; Elina M. Jarho; Kristina Luthman

Sirtuins (SIRTs) catalyze the NAD(+)-dependent deacetylation of N(ε)-acetyl lysines on various protein substrates. SIRTs are interesting drug targets as they are considered to be related to important pathologies such as inflammation and aging-associated diseases. We have previously shown that chroman-4-ones act as potent and selective inhibitors of SIRT2. Herein we report novel chroman-4-one and chromone-based SIRT2 inhibitors containing various heterofunctionalities to improve pharmacokinetic properties. The compounds retained both high SIRT2 selectivity and potent inhibitory activity. Two compounds were tested for their antiproliferative effects in breast cancer (MCF-7) and lung carcinoma (A549) cell lines. Both compounds showed antiproliferative effects correlating with their SIRT2 inhibition potency. They also increased the acetylation level of α-tubulin, indicating that SIRT2 is likely to be the target in cancer cells. A binding mode of the inhibitors that is consistent with the SAR data was proposed based on a homology model of SIRT2.


Biochemical Pharmacology | 2003

Important amino acids for the function of the human MT1 melatonin receptor

Tarja Kokkola; Steven M. Foord; Marie-Ange Watson; Olli Vakkuri; Jarmo T. Laitinen

Models of G protein-coupled melatonin receptor structure suggest that ligand recognition occurs in a binding pocket formed by transmembrane helices III, V and VII. Constitutively active mutations in G protein-coupled receptors have revealed that transmembrane helix III/intracellular loop 2 interface and transmembrane domain VI are critical regions in receptor activation. In this study, nine site-directed mutants of the human MT1 melatonin receptor were created to test the importance of specific amino acids in these regions in ligand recognition and receptor activation events. We analyzed ligand binding, G protein activation and subcellular localization of MT1 receptors transiently expressed in COS-7 cells. Receptor ELISA was employed to study expression levels of N-terminally HA epitope tagged wild-type and mutant MT1 receptors. Mutations in histidine H195 (His(5.46)) in transmembrane domain V reduced receptor affinity for 2-[125I]iodomelatonin. Several other mutants had diminished expression on the plasma membrane. Amino acids M107 (Met(3.32)) in transmembrane domain III and S280 (Ser(7.46)) in transmembrane domain VII were found not to participate in ligand recognition in human MT1 receptor. Constitutive activity was not obtained with mutations in N124 (Asn(3.49)) or P253 (Pro(6.50)). These mutants failed to bind 2-[125I]iodomelatonin and had reduced expression levels. The need to upgrade current melatonin receptor models has become evident. Several important amino acids for the human MT1 melatonin receptor function were revealed in the current study, with effects of mutations ranging from slightly reduced affinity or efficacy to complete loss of function.


Redox biology | 2014

Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress

Niku Oksala; F. Güler Ekmekçi; Ergi Deniz Özsoy; Şerife Gülsün Kirankaya; Tarja Kokkola; Güzin Emecen; Jani Lappalainen; Kai Kaarniranta; Mustafa Atalay

Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6 °C) to those living in normal river water temperature (25.4±4.7 °C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection.


Journal of Medicinal Chemistry | 2013

Screen of Pseudopeptidic Inhibitors of Human Sirtuins 1–3: Two Lead Compounds with Antiproliferative Effects in Cancer Cells

Paolo Mellini; Tarja Kokkola; Tiina Suuronen; Heikki S. Salo; Laura Tolvanen; Antonello Mai; Maija Lahtela-Kakkonen; Elina M. Jarho

In the past few years sirtuins have gained growing attention for their involvement in many biological processes such as cellular metabolism, apoptosis, aging and inflammation. In this contribution, we report the synthesis of a library of thioacetylated pseudopeptides that were screened against human sirtuins 1-3 to reveal their in vitro inhibition activities. Molecular modeling studies were performed to acquire data about the binding modes of the inhibitors. Three sirtuin inhibitors were subjected to cellular studies, and all of them showed an increase in acetylation of Lys382 of p53 after DNA damage. Furthermore, two of the compounds were able to inhibit both A549 lung carcinoma and MCF-7 breast carcinoma cell growth in micromolar concentration with the ability to arrest cancer cell cycle in the G1 phase.


Cellular and Molecular Neurobiology | 1995

Cholinergic Signaling in the Rat Pineal Gland.

Jarmo T. Laitinen; Kirsti S.M. Laitinen; Tarja Kokkola

Summary1. Innervation of the mammalian pineal gland is mainly sympathetic. Pineal synthesis of melatonin and its levels in the circulation are thought to be under strict adrenergic control of serotoninN-acetyltransferase (NAT). In addition, several putative pineal neurotransmitters modulate melatonin synthesis and secretion.2. In this review, we summarize what is currently known on the pineal cholinergic system. Cholinergic signaling in the rat pineal gland is suggested based on the localization of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), as well as muscarinic and nicotinic ACh binding sites in the gland.3. A functional role of ACh may be regulation of pineal synaptic ribbon numbers and modulation of melatonin secretion, events possibly mediated by phosphoinositide (PI) hydrolysis and activation of protein kinase C via muscarinic ACh receptors (mAChRs).4. We also present previously unpublished data obtained using primary cultures of rat pinealocytes in an attempt to get more direct information on the effects of cholinergic stimulus on pinealocyte melatonin secretion. These studies revealed that the cholinergic effects on melatonin release are restricted mainly to intact pineal glands since they were not readily detected in primary pinealocyte cultures.


Toxicology | 1996

Mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces circulating melatonin levels in the rat☆

Raimo Pohjanvirta; Jarmo T. Laitinen; Olli Vakkuri; Jere Lindén; Tarja Kokkola; Mikko Unkila; Jouko Tuomisto

We have previously shown that the prototype for halogenated aromatic hydrocarbons, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), diminishes serum melatonin concentration at the same dose in both the most TCDD-susceptible (Long-Evans, Turku AB; L-E) and the most TCDD-resistant (Han/Wistar, Kuopio; H/W) rat strain. The change developed within 24 h and persisted for at least 28 days after TCDD exposure; was independent of the time of day and was not associated with any morphological damage to the pineal gland. In the present study, we investigated the mechanism of this endocrine effect. Despite a 40-50% decrease in circulating melatonin levels, the pineal content of melatonin, serotonin and 5-hydroxyindole acetic acid remained unaltered and the rate-limiting enzyme of pineal melatonin biosynthesis, N-acetyltransferase, displayed only a relatively minor suppression in activity (30%) in TCDD-treated L-E rats. Likewise, TSDD did not influence the ability of pineal glands from L-E rats to synthesize and secrete melatonin in ex vivo or in vitro experiments. TCDD accelerated the disappearance of exogenous melatonin from the serum in both rat strains. This enhancement probably did not originate in the liver, because liver perfusion studies revealed that even control rat livers were capable of total melatonin clearance in spite of the fact that the melatonin concentration far exceeded physiological levels. Urine excretion of the normal main metabolite of melatonin, 6-hydroxymelatoninsulfate, was reduced by TCDD treatment in both strains. This was accompanied by an altered HPLC pattern of metabolites, especially in H/W rats. We conclude that TCDD decreases serum melatonin levels in rats by enhancing the peripheral, evidently extrahepatic, metabolism of the hormone.

Collaboration


Dive into the Tarja Kokkola's collaboration.

Top Co-Authors

Avatar

Jarmo T. Laitinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elina M. Jarho

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Antti Poso

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Shalem Modi

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Mustafa Atalay

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Nagendra Yaluri

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tiina Suuronen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Juha R. Savinainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge