Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taro Q.P. Uyeda is active.

Publication


Featured researches published by Taro Q.P. Uyeda.


Methods in Enzymology | 1991

Assays for actin sliding movement over myosin-coated surfaces.

Stephen J. Kron; Yoko Y. Toyoshima; Taro Q.P. Uyeda; James A. Spudich

Publisher Summary One important result from in vitro studies of the interaction of the major proteins of muscle, actin and myosin, has been the growing recognition that nearly any aspect of muscle mechanics can be studied in a model system consisting of purified proteins. This chapter is a compilation of techniques for purified in vitro motility assays for actin sliding movement over myosin. Several forms of myosin, including filaments, monomers, and soluble proteolytic fragments, have been found to work well in aetin sliding movement assays. The focus is limited to studies using skeletal muscle proteins, but only slight modification of these protocols may be necessary for proteins derived from smooth muscle and nonmuscle sources. The properties of the protein preparations used are critical to reproducibility of actin sliding movement assays. The methods presented in the chapter are trustworthy preparations but are not singularly successful. However, in particular it should be noted that myosin subfragment preparations that work well in solution experiments might not be optimal for use in movement assays.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A microrotary motor powered by bacteria

Yuichi Hiratsuka; Makoto Miyata; Tetsuya Tada; Taro Q.P. Uyeda

Biological molecular motors have a number of unique advantages over artificial motors, including efficient conversion of chemical energy into mechanical work and the potential for self-assembly into larger structures, as is seen in muscle sarcomeres and bacterial and eukaryotic flagella. The development of an appropriate interface between such biological materials and synthetic devices should enable us to realize useful hybrid micromachines. Here we describe a microrotary motor composed of a 20-μm-diameter silicon dioxide rotor driven on a silicon track by the gliding bacterium Mycoplasma mobile. This motor is fueled by glucose and inherits some of the properties normally attributed to living systems.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana

Noriyuki Suetsugu; Noboru Yamada; Takatoshi Kagawa; Hisashi Yonekura; Taro Q.P. Uyeda; Akeo Kadota; Masamitsu Wada

Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for cp-actin filament accumulation. However, other factors involved in cp-actin filament regulation during chloroplast movement remain to be determined. Here, we report that two kinesin-like proteins, KAC1 and KAC2, are essential for chloroplasts to move and anchor to the plasma membrane. A kac1 mutant showed severely impaired chloroplast accumulation and slow avoidance movement. A kac1kac2 double mutant completely lacked chloroplast photorelocation movement and showed detachment of chloroplasts from the plasma membrane. KAC motor domains are similar to those of the kinesin-14 subfamily (such as Ncd and Kar3) but do not have detectable microtubule-binding activity. The C-terminal domain of KAC1 could interact with F-actin in vitro. Instead of regulating microtubules, KAC proteins mediate chloroplast movement via cp-actin filaments. We conclude that plants have evolved a unique mechanism to regulate actin-based organelle movement using kinesin-like proteins.


Cell | 2010

Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release

Kenji Murakami; Takuo Yasunaga; Taro Q.P. Noguchi; Yuki Gomibuchi; Kien Xuan Ngo; Taro Q.P. Uyeda; Takeyuki Wakabayashi

Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.


PLOS ONE | 2011

Stretching actin filaments within cells enhances their affinity for the myosin ii motor domain

Taro Q.P. Uyeda; Yoshiaki Iwadate; Nobuhisa Umeki; Akira Nagasaki; Shigehiko Yumura

To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Confirmation by FRET in individual living cells of the absence of significant amyloid β-mediated caspase 8 activation

Reiko Onuki; Akira Nagasaki; Hiroaki Kawasaki; Tadashi Baba; Taro Q.P. Uyeda; Kazunari Taira

When cells are exposed to death-inducing molecules such as tumor necrosis factor-α or Fas, caspase 8 is activated and cleaves an apoptotic facilitator, Bid, that is a member of the Bcl-2 family. After additional modification, the C-terminal moiety of Bid is translocated to the mitochondria and induces the release of cytochrome c into the cytoplasm. In an attempt to directly observe the cleavage of Bid and the following events in living cells, we constructed a vector that encoded Bid fused with yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) (YFP-Bid-CFP). On expression of YFP-Bid-CFP in mammalian cells, we were able to observe the efficient transfer of energy from excited CFP to YFP within the YFP-Bid-CFP molecule and, importantly, the fusion protein YFP-Bid-CFP was fully functional in cells. When YFP-Bid-CFP was cleaved by caspase 8, on activation by anti-Fas Abs but not by Aβ or tunicamycin, no such transfer of energy was detected. To our knowledge, this is the first report of (i) visualization of the activation of Bid by proteolytic cleavage, with direct observation of the cleavage of YFP-Bid-CFP in the cytoplasm and subsequent translocation of the cleaved Bid to mitochondria and (ii) the absence of Aβ- or tunicamycin-mediated significant activation of caspase 8 in individual living cells.


BMC Genomics | 2005

A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium , fungi and metazoa

Francisco Rivero; Tetsuya Muramoto; Ann-Kathrin Meyer; Hideko Urushihara; Taro Q.P. Uyeda; Chikako Kitayama

BackgroundFormins are multidomain proteins defined by a conserved FH2 (formin homology 2) domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1) domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes.ResultsWe present a detailed sequence analysis of the 10 formins (ForA to J) identified in the genome of the social amoeba Dictyostelium discoideum. With the exception of ForI and ForC all other formins conform to the domain structure GBD/FH3-FH1-FH2-DAD, where DAD is the Diaphanous autoinhibition domain and GBD/FH3 is the Rho GTPase-binding domain/formin homology 3 domain that we propose to represent a single domain. ForC lacks a FH1 domain, ForI lacks recognizable GBD/FH3 and DAD domains and ForA, E and J have additional unique domains. To establish the relationship between formins of Dictyostelium and other organisms we constructed a phylogenetic tree based on the alignment of FH2 domains. Real-time PCR was used to study the expression pattern of formin genes. Expression of forC, D, I and J increased during transition to multi-cellular stages, while the rest of genes displayed less marked developmental variations. During sexual development, expression of forH and forI displayed a significant increase in fusion competent cells.ConclusionOur analysis allows some preliminary insight into the functionality of Dictyostelium formins: all isoforms might display actin nucleation activity and, with the exception of ForI, might also be susceptible to autoinhibition and to regulation by Rho GTPases. The architecture GBD/FH3-FH1-FH2-DAD appears common to almost all Dictyostelium, fungal and metazoan formins, for which we propose the denomination of conventional formins, and implies a common regulatory mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor.

Sosuke Iwai; Taro Q.P. Uyeda

Many proteins have been shown to undergo conformational changes in response to externally applied force in vitro, but whether the force-induced protein conformational changes occur in vivo remains unclear. To reveal the force-induced conformational changes, or strains, within proteins in living cells, we have developed a genetically encoded fluorescent “strain sensor,” by combining the proximity imaging (PRIM) technique, which uses spectral changes of 2 GFP molecules that are in direct contact, and myosin–actin as a model system. The developed PRIM-based strain sensor module (PriSSM) consists of the tandem fusion of a normal and circularly permuted GFP. To apply strain to PriSSM, it was inserted between 2 motor domains of Dictyostelium myosin II. In the absence of strain, the 2 GFP moieties in PriSSM are in contact, whereas when the motor domains are bound to F-actin, PriSSM has a strained conformation, leading to the loss of contact and a concomitant spectral change. Using the sensor system, we found that the position of the lever arm in the rigor state was affected by mutations within the motor domain. Moreover, the sensor was used to visualize the interaction between myosin II and F-actin in Dictyostelium cells. In normal cells, myosin was largely detached from F-actin, whereas ATP depletion or hyperosmotic stress increased the fraction of myosin bound to F-actin. The PRIM-based strain sensor may provide a general approach for studying force-induced protein conformational changes in cells.


eLife | 2015

Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy

Kien Xuan Ngo; Noriyuki Kodera; Eisaku Katayama; Toshio Ando; Taro Q.P. Uyeda

High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ∼25% shorter, compared to control filaments. Interestingly, the shortened helical pitch was propagated to the neighboring bare zone on the pointed-end side of the cluster, while the pitch on the barbed-end side was similar to the control. Thus, cofilin clusters induce distinctively asymmetric conformational changes in filaments. Consistent with the idea that cofilin favors actin structures with a shorter helical pitch, cofilin clusters grew unidirectionally toward the pointed-end of the filament. Severing was often observed near the boundaries between bare zones and clusters, but not necessarily at the boundaries. DOI: http://dx.doi.org/10.7554/eLife.04806.001


Cytoskeleton | 1997

Myosin II can be localized to the cleavage furrow and to the posterior region of Dictyostelium amoebae without control by phosphorylation of myosin heavy and light chains

Shigehiko Yumura; Taro Q.P. Uyeda

To elucidate the role of phosphorylation in regulation of intracellular distribution of myosin II, we have characterized mutant Dictyostelium cells expressing myosin II that could not be regulated by the phosphorylation on the mapped heavy chain sites, the light chain site, or both sites. Immunofluorescence microscopy demonstrated that all three mutant myosin IIs were localized in the furrow region of dividing cells and in the tail region of migrating cells, similar to wild-type cells. Thus, regulation by phosphorylation is not required to direct myosin II toward the furrow region and the tail region in Dictyostelium. However, myosins that were deficient in heavy chain phosphorylation were distributed only in the cortical region of interphase cells, whereas some myosin IIs were present throughout the endoplasm in wild-type cells. Video microscopy showed that the rate of cell migration was significantly lower in cells that were deficient in heavy chain phosphorylation- than in light chain phosphorylation-deficient cells, myosin null cells and wild-type cells. Chemotactic behavior of cells that were deficient in heavy chain phosphorylation was also retarded. These results suggest that loss of regulation by heavy chain phosphorylation results in excessive myosin in the cortex, which leads to retarded motility.

Collaboration


Dive into the Taro Q.P. Uyeda's collaboration.

Top Co-Authors

Avatar

Akira Nagasaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Taro Q.P. Noguchi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuichi Hiratsuka

Japan Advanced Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyotaka Tokuraku

Muroran Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge