Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taro Takemura is active.

Publication


Featured researches published by Taro Takemura.


Nature Medicine | 2009

Scavenger receptor B2 is a cellular receptor for enterovirus 71

Seiya Yamayoshi; Yasuko Yamashita; Jifen Li; Nobutaka Hanagata; Takashi Minowa; Taro Takemura; Satoshi Koike

Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.


Journal of Nanobiotechnology | 2012

Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel

Liming Xu; Xuefei Li; Taro Takemura; Nobutaka Hanagata; Gang Wu; Laisheng Lee Chou

BackgroundSince silver-nanoparticles (NPs) possess an antibacterial activity, they were commonly used in medical products and devices, food storage materials, cosmetics, various health care products, and industrial products. Various silver-NP based medical devices are available for clinical uses, such as silver-NP based dressing and silver-NP based hydrogel (silver-NP-hydrogel) for medical applications. Although the previous data have suggested silver-NPs induced toxicity in vivo and in vitro, there is lack information about the mechanisms of biological response and potential toxicity of silver-NP-hydrogel.MethodsIn this study, the genotoxicity of silver-NP-hydrogel was assayed using cytokinesis-block micronucleus (CBMN). The molecular response was studied using DNA microarray and GO pathway analysis.Results and discussionThe results of global gene expression analysis in HeLa cells showed that thousands of genes were up- or down-regulated at 48 h of silver-NP-hydrogel exposure. Further GO pathway analysis suggested that fourteen theoretical activating signaling pathways were attributed to up-regulated genes; and three signal pathways were attributed to down-regulated genes. It was discussed that the cells protect themselves against silver NP-mediated toxicity through up-regulating metallothionein genes and anti-oxidative stress genes. The changes in DNA damage, apoptosis and mitosis pathway were closely related to silver-NP-induced cytotoxicity and chromosome damage. The down-regulation of CDC14A via mitosis pathway might play a role in potential genotoxicity induced by silver-NPs.ConclusionsThe silver-NP-hydrogel induced micronuclei formation in cellular level and broad spectrum molecular responses in gene expression level. The results of signal pathway analysis suggested that the balances between anti-ROS response and DNA damage, chromosome instability, mitosis inhibition might play important roles in silver-NP induced toxicity. The inflammatory factors were likely involved in silver-NP-hydrogel complex-induced toxic effects via JAK-STAT signal transduction pathway and immune response pathway. These biological responses eventually decide the future of the cells, survival or apoptosis.


Journal of Bone and Mineral Metabolism | 2011

Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice.

Nobutaka Hanagata; Xianglan Li; Hiromi Morita; Taro Takemura; Jie Li; Takashi Minowa

Interferon-inducible transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein whose expression peaks around the early mineralization stage during the osteoblast maturation process. To investigate IFITM5 function, we first sought to identify which proteins interact with IFITM5. Liquid chromatography mass spectrometry revealed that FK506-binding protein 11 (FKBP11) co-immunoprecipitated with IFITM5. FKBP11 is the only protein it was found to interact with in osteoblasts, while IFITM5 interacts with several proteins in fibroblasts. FKBPs are involved in protein folding and immunosuppressant binding, but we could not be sure that IFITM5 participated in these activities when bound to FKBP11. Thus, we generated Ifitm5-deficient mice and analyzed their skeletal phenotypes. The skeletons, especially the long bones, of homozygous mutants (Ifitm5−/−) were smaller than those of heterozygous mutants (Ifitm5+/−), although we did not observe any significant differences in bone morphometric parameters. The effect of Ifitm5 deficiency on bone formation was more significant in newborns than in young and adult mice, suggesting that Ifitm5 deficiency might have a greater effect on prenatal bone development. Overall, the effect of Ifitm5 deficiency on bone formation was less than we expected. We hypothesize that this may have resulted from a compensatory mechanism in Ifitm5-deficient mice.


Biochimica et Biophysica Acta | 2000

In vitro selection of DNA aptamers which bind to cholic acid.

Teru Kato; Taro Takemura; Kazuyoshi Yano; Kazunori Ikebukuro; Isao Karube

DNA aptamers which bind to cholic acid have been identified by in vitro selection from a pool of approximately 9x10(14) DNA molecules. After 13 rounds of selection, 19 clones with 95-100 nucleotide length were sequenced. Deletion-mutant experiments and computational sequence analysis suggested that all clones contained cholic acid binding sequences which could fold into three-way junction structures. By comparing the sequences involved in the predicted three-way junction structure of these 19 clones, it was determined that the nucleotide sequences and lengths of three stem and loop regions have no similarity. The most conserved structure seems to have three base pairs flanking the junction of the three stems and they may form a hydrophobic cavity in which they interact with cholic acid.


Biomaterials | 2010

Contribution of physicochemical characteristics of nano-oxides to cytotoxicity

Mingsheng Xu; Daisuke Fujita; Shoko Kajiwara; Takashi Minowa; Xianglan Li; Taro Takemura; Hideo Iwai; Nobutaka Hanagata

To identify the key physicochemical properties of nano-oxides governing cytotoxicity, we investigate the contribution of the size, shape, morphology, and electronic properties of ten types of insulator (SiO(2), CeO(2) and Al(2)O(3)) and semiconductor (ZnO and CuO) nano-oxides to cytotoxicity using the NIH3T3 and A549 cell lines as models. We find that the shape of the Al(2)O(3) (nanoparticle versus nanowhisker) and the morphology of the SiO(2) (porous versus non-porous nanoparticles) did not have obvious effect on the observed cytotoxicity, and the size of the nano-oxides cannot be regarded as an indicator of cytotoxicity. By contrast, we find that the cell viability exposed to the semiconductor nano-oxides was much lower than that exposed to the insulator nano-oxides. Moreover, the Al-doped ZnO nanoparticle (NP) was more toxic than the non-doped ZnO NP, whereas the Al-doped CuO NP was less toxic than the non-doped CuO NP but more toxic than the Al(2)O(3) NP. Correspondingly, the valence band X-ray photoelectron spectra of the nano-oxides show the density of states of the Al-doped ZnO NP (the Al-doped CuO NP) is higher (lower) than that of the non-doped ZnO NP (the non-doped CuO NP). These results suggest that the electronic properties of nano-oxides may play an important role in the observed cytotoxicity. The results have implications for selectively tailoring the toxic effect and establishing predictive models for the design of various types of nanomaterials with unique properties and for the understanding of interactions between nanomaterials with biological system.


Langmuir | 2011

Effect of interfacial proteins on osteoblast-like cell adhesion to hydroxyapatite nanocrystals.

Motohiro Tagaya; Toshiyuki Ikoma; Taro Takemura; Nobutaka Hanagata; Tomohiko Yoshioka; Junzo Tanaka

A quartz crystal microbalance with dissipation (QCM-D) technique was employed to detecting the protein adsorption and subsequent osteoblast-like cell adhesion to hydroxyapatite (HAp) nanocrystals. The interfacial phenomena with the preadsorption of three proteins (albumin (BSA), fibronectin (Fn), and collagen (Col)), the subsequent adsorption of fetal bovine serum (FBS), and the adhesion of the cells were investigated. The QCM-D measured the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic properties of the adlayers were evaluated using ΔD-Δf plot and Voigt-based viscoelastic model. The Col adsorption significantly showed higher Δf, ΔD, elasticity, and viscosity values as compared to the BSA and Fn adsorption, and the subsequent FBS adsorption depended on the preadsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed a different behavior depending on the surfaces, and the Fn- and Col-modified surfaces showed the rapid mass and ΔD changes by forming the viscous interfacial layers with cell adhesion, indicating that the processes were affected by the cellular reaction through the extracellular matrix (ECM) proteins. The confocal laser scanning microscope images of adherent cells showed a different morphology and pseudopod on the surfaces. The cells adhered to the surfaces modified with the Fn and Col had significantly uniaxially expanded shapes and fibrous pseudopods, and those modified with the BSA had a round shape. Therefore, the different cell-protein interactions would cause the arrangement of the ECM and the cytoskeleton changes at the interfaces, and these phenomena were successfully detected by the QCM-D and Voigt-based model.


Osteoarthritis and Cartilage | 2012

Coexistence of fibrotic and chondrogenic process in the capsule of idiopathic frozen shoulders

Yoshihiro Hagiwara; Akira Ando; Y. Onoda; Taro Takemura; Takashi Minowa; Nobutaka Hanagata; Masahiro Tsuchiya; Takashi Watanabe; Eiichi Chimoto; H. Suda; N. Takahashi; H. Sugaya; Yoshifumi Saijo; Eiji Itoi

OBJECTIVE To analyze changes in the capsule from idiopathic frozen shoulders and clarify their etiology. MATERIALS AND METHODS Samples (the rotator interval capsule, middle glenohumeral ligament (MGHL), and inferior glenohumeral ligament (IGHL)) were collected from 12 idiopathic frozen shoulders with severe stiffness and 18 shoulders with rotator cuff tears as a control. The number of cells was counted and the tissue elasticity of the samples was calculated by scanning acoustic microscopy (SAM). The amount of glycosaminoglycan content was assessed by alcian blue staining. Gene and protein expressions related to fibrosis, inflammation, and chondrogenesis were analyzed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Furthermore, the total genes of the two groups were compared by DNA microarray analysis. RESULTS The number of cells was significantly higher and the capsular tissue was significantly stiffer in idiopathic frozen shoulders compared with shoulders with rotator cuff tears. Staining intensity of alcian blue was significantly stronger in idiopathic frozen shoulders. Gene expressions related to fibrosis, inflammation, and chondrogenesis were significantly higher in idiopathic frozen shoulders compared with shoulders with rotator cuff tears assessed by both qPCR and DNA microarray analysis. CONCLUSION In addition to fibrosis and inflammation, which used to be considered the main pathology of frozen shoulders, chondrogenesis is likely to have a critical role in pathogenesis of idiopathic frozen shoulders.


Langmuir | 2011

Detection of Interfacial Phenomena with Osteoblast-like Cell Adhesion on Hydroxyapatite and Oxidized Polystyrene by the Quartz Crystal Microbalance with Dissipation

Motohiro Tagaya; Toshiyuki Ikoma; Taro Takemura; Nobutaka Hanagata; Mitsuhiro Okuda; Tomohiko Yoshioka; Junzo Tanaka

The adhesion process of osteoblast-like cells on hydroxyapatite (HAp) and oxidized polystyrene (PSox) was investigated using a quartz crystal microbalance with dissipation (QCM-D), confocal laser scanning microscope (CLSM), and atomic force microscope (AFM) techniques in order to clarify the interfacial phenomena between the surfaces and cells. The interfacial viscoelastic properties (shear viscosity (η(ad)), elastic shear modulus (μ(ad)), and tan δ) of the preadsorbed protein layer and the interface layer between the surfaces and cells were estimated using a Voigt-based viscoelastic model from the measured frequency (Δf) and dissipation shift (ΔD) curves. In the ΔD-Δf plots, the cell adhesion process on HAp was classified as (1) a mass increase only, (2) increases in both mass and ΔD, and (3) slight decreases in mass and ΔD. On PSox, only ΔD increases were observed, indicating that the adhesion behavior depended on the surface properties. The interfacial μ(ad) value between the material surfaces and cells increased with the number of adherent cells, whereas η(ad) and tanδ decreased slightly, irrespective of the surface. Thus, the interfacial layer changed the elasticity to viscosity with an increase in the number. The tan δ values on HAp were higher than those on PSox and exceeded 1.0. Furthermore, the pseudopod-like structures of the cells on HAp had periodic stripe patterns stained with a type I collagen antibody, whereas those on PSox had cell-membrane-like structures unstained with type I collagen. These results indicate that the interfacial layers on PSox and HAp exhibit elasticity and viscosity, respectively, indicating that the rearrangements of the extracellular matrix and cytoskeleton changes cause different cell-surface interactions. Therefore, the different cell adhesion process, interfacial viscoelasticity, and morphology depending on the surfaces were successfully monitored in situ and evaluated by the QCM-D technique combined with other techniques.


PLOS ONE | 2015

The co-transplantation of bone marrow derived mesenchymal stem cells reduced inflammation in intramuscular islet transplantation.

Gumpei Yoshimatsu; Naoaki Sakata; Haruyuki Tsuchiya; Takashi Minowa; Taro Takemura; Hiromi Morita; Tatsuo Hata; Masahiko Fukase; Takeshi Aoki; Masaharu Ishida; Fuyuhiko Motoi; Takeshi Naitoh; Yu Katayose; Shinichi Egawa; Michiaki Unno

Aims/Hypothesis Although the muscle is one of the preferable transplant sites in islet transplantation, its transplant efficacy is poor. Here we attempted to determine whether an intramuscular co-transplantation of mesenchymal stem cells (MSCs) could improve the outcome. Methods We co-cultured murine islets with MSCs and then analyzed the morphological changes, viability, insulin-releasing function (represented by the stimulation index), and gene expression of the islets. We also transplanted 500 islets intramuscularly with or without 5 × 105 MSCs to diabetic mice and measured their blood glucose level, the glucose changes in an intraperitoneal glucose tolerance test, and the plasma IL-6 level. Inflammation, apoptosis, and neovascularization in the transplantation site were evaluated histologically. Results The destruction of islets tended to be prevented by co-culture with MSCs. The stimulation index was significantly higher in islets co-cultured with MSCs (1.78 ± 0.59 vs. 7.08 ± 2.53; p = 0.0025). In terms of gene expression, Sult1c2, Gstm1, and Rab37 were significantly upregulated in islets co-cultured with MSCs. Although MSCs were effective in the in vitro assays, they were only partially effective in facilitating intramuscular islet transplantation. Co-transplanted MSCs prevented an early inflammatory reaction from the islets (plasma IL-6; p = 0.0002, neutrophil infiltration; p = 0.016 inflammatory area; p = 0.021), but could not promote neovascularization in the muscle, resulting in the failure of many intramuscular transplanted islets to engraft. Conclusions In conclusion, co-culturing and co-transplanting MSCs is potentially useful in islet transplantation, especially in terms of anti-inflammation, but further augmentation for an anti-apoptosis effect and neovascularization is necessary.


International Journal of Nanomedicine | 2015

Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model.

Liming Xu; Mo Dan; Anliang Shao; Xiang Cheng; Cuiping Zhang; Robert A. Yokel; Taro Takemura; Nobutaka Hanagata; Masami Niwa; Daisuke Watanabe

Background Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. Method To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. Results A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and decreasing Nr4a1 and Dusp1. Meanwhile, Ag-NPS induced inflammation and apoptosis through modulation of the MAPK pathway or B-cell lymphoma-2 expression or mTOR activity in astrocytes. Conclusion These results draw our attention to the importance of Ag-NP-induced toxicity on the neurovascular unit and provide a better understanding of its toxicological mechanisms on astrocytes.

Collaboration


Dive into the Taro Takemura's collaboration.

Top Co-Authors

Avatar

Nobutaka Hanagata

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Takashi Minowa

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Toshiyuki Ikoma

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Junzo Tanaka

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Motohiro Tagaya

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tomohiko Yoshioka

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge