Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tarron Lamont is active.

Publication


Featured researches published by Tarron Lamont.


African Journal of Marine Science | 2012

St Helena Bay (southern Benguela) then and now: muted climate signals, large human impact

L. Hutchings; Astrid Jarre; Tarron Lamont; M van den Berg; Sp Kirkman

The development of suitable reference states for ecosystem-based management requires documentation of changes in structure and functioning of marine ecosystems, including assessment of the relative importance of bottom-up and top-down processes as drivers of change. We used monitoring data available from St Helena Bay, the most productive bay and an important nursery area situated on the west coast of South Africa, during 1950–2010 to reveal changes in the abiotic and biotic components. St Helena Bay in the 1950s showed similarities to 2000–2010 in terms of wind patterns, hydrology and phytoplankton. Upwelling, oxygen and nutrient concentrations in subthermocline water displayed pronounced decadal-scale variability. Primary production in St Helena Bay is variable, but consistently higher than that on the adjacent Namaqua shelf. Zooplankton size composition and biomass in August have changed markedly since the 1950s. During 2001–2010, mesozooplankton biomass in autumn was considerably lower than in summer, probably due to predation by small pelagic fish. Pelagic fish catch patterns and distributions have altered dramatically. Conservation measures, implemented to reverse past negative human impact, have benefitted marine mammals, the abundance of which has increased in the area, but additional conservation measures are necessary to reverse the decline in African penguins Spheniscus demersus. St Helena Bay shows a muted response to long-term change in the southern Benguela, with marked decadal variability but no clear long-term trend in oceanography and biogeochemistry. Changes in ecosystem boundary conditions and fishing pressure cannot be ignored as important drivers of change in the southern Benguela since the 1950s.


Journal of Geophysical Research | 2015

Hydrographic variability in the St. Helena Bay region of the southern Benguela ecosystem

Tarron Lamont; L. Hutchings; M. A. van den Berg; W. S. Goschen; Ray Barlow

Cross-shelf distributions of temperature, salinity, water masses, and dissolved oxygen in St. Helena Bay revealed substantial vertical and seasonal variations. In the surface layers, nearshore and offshore temperature and salinity patterns differed, with bay-scale variability linked to upwelling dynamics and coastal processes, while the offshore region was influenced by solar insolation. Spectral analysis revealed that an annual signal prevailed at most stations, and corroborated contrasting patterns between the offshore and nearshore regions, with phase differences suggesting shoreward propagation of the offshore temperature signal. The shelf was dominated by Modified Upwelled Water (MUW) and Subantarctic Mode Water (SAMW), which comprised the primary source of upwelled water. Clear zonation of MUW was evident across the shelf, resulting from seasonal variations in locations of the oceanic and bifurcated shelf-break fronts. Dynamics within St. Helena Bay consistently differed from those further offshore, due to the influences of the shelf-break front, Cape Columbine upwelling plume, and cyclonic recirculation, which appeared to be associated with an intraannual signal with a periodicity of 3–4 months. Persistent hypoxia in the bottom waters suggested the occurrence of a permanent reservoir of Low Oxygen Water (LOW). Seasonal shoreward and offshore expansion of LOW occurred throughout the upwelling season, with maximum extent reached during summer and autumn, due to the coupled effects of advection and local phytoplankton decay. While wind mixing ventilated the water column at nearshore stations in winter, and the onset of upwelling during spring introduced oxygen-richer water from further offshore, hypoxia persisted in the center of the Bay.


African Journal of Marine Science | 2015

Chemotaxonomic investigation of phytoplankton in the shelf ecosystem of the KwaZulu-Natal Bight, South Africa

Ray Barlow; Tarron Lamont; M-J Gibberd; M van den Berg; K Britz

Phytoplankton community structure was elucidated during summer and winter in the KwaZulu-Natal Bight using pigment and CHEMTAX analyses. The surface pattern in January 2010 indicated that diatoms, haptophytes and prasinophytes tended to be the most prominent groups inshore and in the southern sector of the bight, whereas Prochlorococcus and Synechococcus were more dominant in the north and towards the offshore region. At the deep chlorophyll maximum (DCM), diatoms were dominant in the inner bight and in the south, with prasinophytes being the prominent flagellates, but this changed to Prochlorococcus and pelagophytes being the important groups in the northern sector and outer part of the bight. A different pattern was observed at the surface in July 2010, where diatoms, haptophytes, prasinophytes and cryptophytes in varying proportions comprised most of the community in the inner half of the bight, whereas Synechococcus and haptophytes were the main groups in the outer sector. A similar pattern occurred at the DCM, except that Synechococcus was less prominent and pelagophytes were distributed across the bight in both the inshore and offshore zones. Observations and relationships between phytoplankton groups and environmental parameters indicated that the groups were most closely related to temperature, accounting for 24–64% of the deviance. The influence of nutrients on phytoplankton was less clear but nitrate and silicate seemed to account for some of the patchy distribution patterns.


African Journal of Marine Science | 2010

Circulation patterns in the Delagoa Bight, Mozambique, and the influence of deep ocean eddies

Tarron Lamont; M. J. Roberts; R Barlow; T. Morris; M van den Berg

An investigation of the circulation patterns and thermohaline structures in the Delagoa Bight, Mozambique, was undertaken during May 2004, August 2004, April 2005, and April 2006, using hydrographic surveys, surface drifters and satellite imagery. Hydrographic and satellite data during May 2004 illustrated a cyclonic eddy centred at 26° S, 34.25° E in the Bight. A surface drifter remained trapped in this eddy for six weeks between 8 May and 20 June 2004 before moving southward in the Agulhas Current. During August 2004, the core of a cyclonic eddy was located south of the Bight, while no cyclonic eddy was observed during April 2005 or in April 2006. The Delagoa Bight eddy appeared to be more transient than previously thought. Important observations were the recurrent northward current (25–30 cm s−1) occurring subsurface on the shelf, and the prominence of cooler upwelled water at various locations due to the interaction of passing eddies with the bottom topography of the Bight.


PLOS ONE | 2016

Foraging Behavior of Subantarctic Fur Seals Supports Efficiency of a Marine Reserve’s Design

Stephen P. Kirkman; Dawit Yemane; Tarron Lamont; Michael A. Meÿer; Pierre A. Pistorius

Foraging behaviour of marine top predators is increasingly being used to identify areas of ecological importance. This is largely enabled by the ability of many such species to forage extensively in search of prey that is often concentrated in oceanographically productive areas. To identify important habitat in the Southern Indian Ocean within and around South Africa’s Prince Edward Islands’ Marine Protected Area (MPA), satellite transmitters were deployed on 12 lactating Subantarctic fur seals Arctocephalus tropicalis at Prince Edward Island (PEI) itself. Switching state space models were employed to correct ARGOS tracks and estimate behavioural states for locations along predicted tracks, namely travelling or area restricted search (ARS). A random forest model showed that distance from the study colony, longitude and distance from the Subantarctic Front were the most important predictors of suitable foraging habitat (inferred from ARS). Model-predicted suitable habitat occurred within the MPA in relatively close access to the colony during summer and autumn, but shifted northwards concurrently with frontal movements in winter and spring. The association of ARS with the MPA during summer-autumn was highly significant, highlighting the effectiveness of the recently declared reserve’s design for capturing suitable foraging habitat for this and probably other marine top predator species.


African Journal of Marine Science | 2011

Phytoplankton production and adaptation in the vicinity of Pemba and Zanzibar islands, Tanzania

R Barlow; Tarron Lamont; Margareth S. Kyewalyanga; H. Sessions; M van den Berg; F Duncan

Phytoplankton production and physiology were investigated at six selected locations during a research cruise in early October 2007 in Tanzanian coastal waters. The dataset included photosynthesis– irradiance and active fluorescence parameters, phytoplankton absorption coefficients, and pigment concentrations. Primary production was estimated to vary over the range 0.79–1.89 g C m−2 d−1. Diagnostic pigments indicated that micro–nanophytoplankton comprised the communities at three stations and nano–picoplankton at the other three stations. At all stations, the populations maximised their photosynthesis in the upper water column under elevated irradiance and low nutrient conditions. Significant photosynthetic activity was also observed at depth under very low light where the communities increased their quantum yield of photochemistry and the proportion of accessory chlorophylls b and c and photosynthetic carotenoids.


African Journal of Marine Science | 2016

Spatial characterisation of the Benguela ecosystem for ecosystem-based management

Sp Kirkman; Laura K. Blamey; Tarron Lamont; John G. Field; G Bianchi; Jenny A. Huggett; L. Hutchings; J Jackson-Veitch; Astrid Jarre; Christophe Lett; Lipiński; Sw Mafwila; Mc Pfaff; Toufiek Samaai; Lynne J. Shannon; Y-J Shin; Cd van der Lingen; Dawit Yemane

The three countries of the Benguela Current Large Marine Ecosystem (BCLME), namely Angola, Namibia and South Africa, have committed to implementing ecosystem-based management (EBM) including an ecosystem approach to fisheries (EAF) in the region, to put in practice the principles of sustainable development in ocean-related matters. There is also recognition of the need for marine spatial planning (MSP) as a process for informing EBM with regard to the allocation and siting of ocean uses so that ecosystem health is ensured and trade-offs between ecosystem services are appropriately dealt with. Marine spatial planning is both an integrated and an area-based process, and this paper produces a spatial characterisation of the BCLME for achieving a common basis for MSP in the region, focusing on the oceanography, biology and fisheries. Recognising spatial variation in physical driving forces, primary and secondary production, trophic structures and species richness, four different subsystems are characterised: (1) north of the Angola–Benguela Front, (2) from the Angola–Benguela Front to Lüderitz, (3) from Lüderitz to Cape Agulhas, and (4) from Cape Agulhas to Port Alfred on the south-east coast of South Africa. Research and monitoring requirements of relevance for MSP and EBM in the region are identified, focusing on understanding variability and change, including with regard to the boundary areas identified for the system. To this end, 14 cross-shelf monitoring transects are proposed (including seven that are already being monitored) to estimate fluxes of biota, energy and materials within and between the subsystems. The usefulness of models for understanding ecosystem variability and changes is recognised and the need for fine-scale resolution of both sampling and modelling for adequate MSP as input to EBM for the often-conflicting interests of conserving biodiversity, and managing fisheries, recreation, offshore oil and gas exploration and exploitation, offshore mining and shipping routes, is emphasised.


African Journal of Marine Science | 2013

Effects of deep-sea eddies on the northern KwaZulu-Natal shelf, South Africa

T Morris; Tarron Lamont; Michael Roberts

This paper describes the westward movement of a cyclonic eddy across the Mozambique Channel and the subsequent south-westward propagation of the eddy along the east coast of South Africa and its interaction with the shelf. A hydrographic survey on 13 September 2006 off Nine-mile Reef (NMR), Sodwana Bay, showed a well-developed Agulhas Current along the continental shelf inshore of a cyclonic eddy flanked by two anti-cyclonic eddies, further offshore. A satellite-tracked drifter and complementary altimetry data confirmed the dimensions of the eddy and tracked its movement towards the coast. Shelf-edge upwelling was measured at NMR by an underwater temperature recorder (UTR) when the cyclonic eddy first came into contact with the shelf and again when the cyclonic eddy interacted with the leading edge of the anti-cyclonic eddy moving onto the shelf. Further shelf–eddy interactions off Aliwal Shoal, south of Durban, and consequent upwelling were similarly caused by the same cyclonic eddy as it progressed south-westward along the east coast. Analysis of UTR data between 2004 and 2006 indicated that between two and five cyclonic eddies impact the shelf off NMR per year.


Journal of Physical Oceanography | 2016

Agulhas Current Influence on the Shelf Dynamics of the KwaZulu-Natal Bight

Tarron Lamont; M. A. van den Berg; Ray Barlow

AbstractThe Agulhas Current is a fast western boundary current flowing along the South African east coast, strongly influencing oceanographic variability on the adjacent KwaZulu-Natal shelf. Hydrographic observations in January 2010, July 2010, and July 1989 have been used to describe variations in geostrophic currents and water masses and to elucidate mechanisms of change in circulation and thermohaline structure. Differences in wind forcing, precipitation, and solar insolation caused modifications in stratification and mixing that resulted in seasonal changes in surface temperature, salinity, and mixed layer depth ZMLD between the austral summer and winter surveys. During January 2010, surface temperatures were elevated and there was a large range in salinity as the upper 10 m was influenced by river outflow and rainfall. In July 2010 and 1989, surface temperatures were lower and the salinity range was significantly less. The ZMLD in January 2010 was much shallower, varying between 5 and 40 m, while dee...


African Journal of Marine Science | 2012

Phytoplankton absorption and pigment adaptation of a red tide in the Benguela ecosystem

R Barlow; Tarron Lamont

Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed close to the coast where chlorophyll a concentrations of up to 117 mg m–3 were measured. Both measured (a ph) and reconstructed pigment absorption (a pig) displayed an increasing trend with chlorophyll a, while the package effect index (Q* a) decreased, indicating increased packaging with an increase in biomass. Proportioning of the total pigment absorption between 400 and 700 nm revealed that chlorophyll a accounted for 39–65% of the absorption, while photosynthetic carotenoids (15–30%) and chlorophyll cs (15–30%) were also prominent in absorbing light for photosynthesis.

Collaboration


Dive into the Tarron Lamont's collaboration.

Top Co-Authors

Avatar

Ray Barlow

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar

L. Hutchings

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar

Astrid Jarre

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Bograd

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge