Taru A. Muranen
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taru A. Muranen.
Nature Genetics | 2011
Jason W. Locasale; Alexandra R. Grassian; Tamar Melman; Costas A. Lyssiotis; Katherine R. Mattaini; Adam J. Bass; Gregory J. Heffron; Christian M. Metallo; Taru A. Muranen; Hadar Sharfi; Atsuo T. Sasaki; Dimitrios Anastasiou; Edouard Mullarky; Natalie I. Vokes; Mika Sasaki; Rameen Beroukhim; Gregory Stephanopoulos; Azra H. Ligon; Matthew Meyerson; Andrea L. Richardson; Lynda Chin; Gerhard Wagner; John M. Asara; Joan S. Brugge; Lewis C. Cantley; Matthew G. Vander Heiden
Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.
Cancer Cell | 2012
Taru A. Muranen; Laura M. Selfors; Devin Worster; Marcin P. Iwanicki; Loling Song; Fabiana C. Morales; Sizhen Gao; Gordon B. Mills; Joan S. Brugge
The PI3K/mTOR-pathway is the most commonly dysregulated pathway in epithelial cancers and represents an important target for cancer therapeutics. Here, we show that dual inhibition of PI3K/mTOR in ovarian cancer-spheroids leads to death of inner matrix-deprived cells, whereas matrix-attached cells are resistant. This matrix-associated resistance is mediated by drug-induced upregulation of cellular survival programs that involve both FOXO-regulated transcription and cap-independent translation. Inhibition of any one of several upregulated proteins, including Bcl-2, EGFR, or IGF1R, abrogates resistance to PI3K/mTOR inhibition. These results demonstrate that acute adaptive responses to PI3K/mTOR inhibition in matrix-attached cells resemble well-conserved stress responses to nutrient and growth factor deprivation. Bypass of this resistance mechanism through rational design of drug combinations could significantly enhance PI3K-targeted drug efficacy.
Science Translational Medicine | 2013
Moshe Elkabets; Sadhna Vora; Dejan Juric; Natasha Morse; Mari Mino-Kenudson; Taru A. Muranen; Jessica J. Tao; Ana Bosch Campos; Jordi Rodon; Yasir H. Ibrahim; Violeta Serra; Vanessa Rodrik-Outmezguine; Saswati Hazra; Sharat Singh; Phillip Kim; Cornelia Quadt; Manway Liu; Alan Huang; Neal Rosen; Jeffrey A. Engelman; Maurizio Scaltriti; José Baselga
Persistent mTORC1 signaling correlates with resistance to PI3K p110α inhibition in breast cancer, which can be overcome by inhibiting mTORC1. Caveat mTOR In recent years, numerous new drugs have been developed to take advantage of specific molecular changes in cancer cells. Unfortunately, tumors are often a step ahead of the scientists, becoming resistant to these targeted drugs just when they seem to be working perfectly. Now, two groups of researchers have developed rational combination treatments that block resistance to targeted cancer drugs by inhibiting mTOR. Elkabets and coauthors were working on breast cancer, where the PIK3CA gene is frequently mutated. Inhibitors of PI3K (the protein product of PIK3CA) are currently in clinical trials, but some of the cancers are resistant to these drugs. The authors have discovered that breast cancers resistant to the PI3K inhibitor BYL719 had persistently active mTOR signaling, both in cultured cell lines and in patient tumors. Adding an mTOR inhibitor to the treatment regimen could reverse the resistance and kill the tumor cells. Corcoran et al. found a similar mTOR-dependent drug resistance mechanism to be active in melanoma as well. BRAF-mutant melanomas, the most common type, are frequently treated with RAF and MEK inhibitors, but only with mixed results, because melanomas quickly develop resistance to these drugs. Now, the authors have shown that drug-resistant melanomas also have persistent activation of mTOR, and adding an mTOR inhibitor to the treatment regimen can block drug resistance and kill the cancer cells. In both studies, the activation of mTOR in drug-resistant tumors has been confirmed in human patients, but the combination treatments have only been tested in cells and in mouse models thus far. Thus, the next critical step would be to confirm that adding mTOR inhibition to treatment regimens for these cancers is effective in the clinical setting as well. Some mTOR inhibitors are already available for use in patients, so hopefully soon mTOR activation will not be something to beware of, but something to monitor and target with specific drugs. Activating mutations of the PIK3CA gene occur frequently in breast cancer, and inhibitors that are specific for phosphatidylinositol 3-kinase (PI3K) p110α, such as BYL719, are being investigated in clinical trials. In a search for correlates of sensitivity to p110α inhibition among PIK3CA-mutant breast cancer cell lines, we observed that sensitivity to BYL719 (as assessed by cell proliferation) was associated with full inhibition of signaling through the TORC1 pathway. Conversely, cancer cells that were resistant to BYL719 had persistently active mTORC1 signaling, although Akt phosphorylation was inhibited. Similarly, in patients, pS6 (residues 240/4) expression (a marker of mTORC1 signaling) was associated with tumor response to BYL719, and mTORC1 was found to be reactivated in tumors from patients whose disease progressed after treatment. In PIK3CA-mutant cancer cell lines with persistent mTORC1 signaling despite PI3K p110α blockade (that is, resistance), the addition of the allosteric mTORC1 inhibitor RAD001 to the cells along with BYL719 resulted in reversal of resistance in vitro and in vivo. Finally, we found that growth factors such as insulin-like growth factor 1 and neuregulin 1 can activate mammalian target of rapamycin (mTOR) and mediate resistance to BYL719. Our findings suggest that simultaneous administration of mTORC1 inhibitors may enhance the clinical activity of p110α-targeted drugs and delay the appearance of resistance.
Cancer Discovery | 2011
Marcin P. Iwanicki; Rachel A. Davidowitz; Mei Rosa Ng; Achim Besser; Taru A. Muranen; Melissa A. Merritt; Gaudenz Danuser; Tan A. Ince; Joan S. Brugge
Dissemination of ovarian tumors involves the implantation of cancer spheroids into the mesothelial monolayer on the walls of peritoneal and pleural cavity organs. Biopsies of tumors attached to peritoneal organs show that mesothelial cells are not present under tumor masses. We have developed a live, image-based in vitro model in which interactions between tumor spheroids and mesothelial cells can be monitored in real time to provide spatial and temporal understanding of mesothelial clearance. Here we provide evidence that ovarian cancer spheroids utilize integrin- and talin- dependent activation of myosin and traction force to promote mesothelial cells displacement from underneath a tumor cell spheroid. These results suggest that ovarian tumor cell clusters gain access to the sub-mesothelial environment by exerting force on the mesothelial cells lining target organs, driving migration and clearance of the mesothelial cells.
Journal of Clinical Oncology | 2012
Maren Weischer; Børge G. Nordestgaard; Paul Pharoah; Manjeet K. Bolla; Heli Nevanlinna; Laura J. van't Veer; Montserrat Garcia-Closas; John L. Hopper; Per Hall; Irene L. Andrulis; Peter Devilee; Peter A. Fasching; Hoda Anton-Culver; Diether Lambrechts; Maartje J. Hooning; Angela Cox; Graham G. Giles; Barbara Burwinkel; Annika Lindblom; Fergus J. Couch; Arto Mannermaa; Grethe Grenaker Alnæs; Esther M. John; Thilo Dörk; Henrik Flyger; Alison M. Dunning; Qin Wang; Taru A. Muranen; Richard van Hien; Jonine D. Figueroa
PURPOSE We tested the hypotheses that CHEK2*1100delC heterozygosity is associated with increased risk of early death, breast cancer-specific death, and risk of a second breast cancer in women with a first breast cancer. PATIENTS AND METHODS From 22 studies participating in the Breast Cancer Association Consortium, 25,571 white women with invasive breast cancer were genotyped for CHEK2*1100delC and observed for up to 20 years (median, 6.6 years). We examined risk of early death and breast cancer-specific death by estrogen receptor status and risk of a second breast cancer after a first breast cancer in prospective studies. RESULTS CHEK2*1100delC heterozygosity was found in 459 patients (1.8%). In women with estrogen receptor-positive breast cancer, multifactorially adjusted hazard ratios for heterozygotes versus noncarriers were 1.43 (95% CI, 1.12 to 1.82; log-rank P = .004) for early death and 1.63 (95% CI, 1.24 to 2.15; log-rank P < .001) for breast cancer-specific death. In all women, hazard ratio for a second breast cancer was 2.77 (95% CI, 2.00 to 3.83; log-rank P < .001) increasing to 3.52 (95% CI, 2.35 to 5.27; log-rank P < .001) in women with estrogen receptor-positive first breast cancer only. CONCLUSION Among women with estrogen receptor-positive breast cancer, CHEK2*1100delC heterozygosity was associated with a 1.4-fold risk of early death, a 1.6-fold risk of breast cancer-specific death, and a 3.5-fold risk of a second breast cancer. This is one of the few examples of a genetic factor that influences long-term prognosis being documented in an extensive series of women with breast cancer.
Oncogene | 2005
Taru A. Muranen; Mikaela Grönholm; G Herma Renkema; Olli Carpén
The neurofibromatosis 2 tumour suppressor merlin/schwannomin is structurally related to the ezrin–radixin–moesin family of proteins, which anchor actin cytoskeleton to specific membrane proteins and participate in cell signalling. Merlin inhibits cell growth with a yet unknown mechanism. As most tumour suppressors are linked to cell cycle control, we investigated merlins behaviour during cell cycle. In glioma and osteosarcoma cells, endogenous merlin was targeted to the nucleus in a cell cycle-specific manner. Merlin accumulated perinuclearly at the G2/M phase, and shifted to the nucleus at early G1. During mitosis, merlin localized to mitotic spindles and at the contractile ring. Nuclear merlin was strongly reduced in confluent cells. Blocking of the CRM1/exportin nuclear export pathway led to accumulation of merlin in the nucleus. Activation of the p21-activated kinase or protein kinase A, which result in phosphorylation of merlin, did not affect its nuclear localization. Merlin regulates the activity of extracellular signal-regulated kinase 2 (ERK2) and nuclear localization of both proteins was induced by cell adhesion. Unlike ERK2, nuclear localization of merlin was not, however, dependent on intact actin cytoskeleton. These results link merlin to events related to cell cycle control and may help to resolve its tumour suppressor function.
Journal of Clinical Oncology | 2016
Marjanka K. Schmidt; Frans B. L. Hogervorst; Richard van Hien; Sten Cornelissen; Annegien Broeks; Muriel A. Adank; Hanne Meijers; Quinten Waisfisz; Antoinette Hollestelle; Mieke Schutte; Ans van den Ouweland; Maartje J. Hooning; Irene L. Andrulis; Hoda Anton-Culver; Natalia Antonenkova; Antonis C. Antoniou; Volker Arndt; Marina Bermisheva; Natalia Bogdanova; Manjeet K. Bolla; Hiltrud Brauch; Hermann Brenner; Thomas Brüning; Barbara Burwinkel; Jenny Chang-Claude; Georgia Chenevix-Trench; Fergus J. Couch; Angela Cox; Simon S. Cross; Kamila Czene
PURPOSE CHEK2*1100delC is a well-established breast cancer risk variant that is most prevalent in European populations; however, there are limited data on risk of breast cancer by age and tumor subtype, which limits its usefulness in breast cancer risk prediction. We aimed to generate tumor subtype- and age-specific risk estimates by using data from the Breast Cancer Association Consortium, including 44,777 patients with breast cancer and 42,997 controls from 33 studies genotyped for CHEK2*1100delC. PATIENTS AND METHODS CHEK2*1100delC genotyping was mostly done by a custom Taqman assay. Breast cancer odds ratios (ORs) for CHEK2*1100delC carriers versus noncarriers were estimated by using logistic regression and adjusted for study (categorical) and age. Main analyses included patients with invasive breast cancer from population- and hospital-based studies. RESULTS Proportions of heterozygous CHEK2*1100delC carriers in controls, in patients with breast cancer from population- and hospital-based studies, and in patients with breast cancer from familial- and clinical genetics center-based studies were 0.5%, 1.3%, and 3.0%, respectively. The estimated OR for invasive breast cancer was 2.26 (95%CI, 1.90 to 2.69; P = 2.3 × 10(-20)). The OR was higher for estrogen receptor (ER)-positive disease (2.55 [95%CI, 2.10 to 3.10; P = 4.9 × 10(-21)]) than it was for ER-negative disease (1.32 [95%CI, 0.93 to 1.88; P = .12]; P interaction = 9.9 × 10(-4)). The OR significantly declined with attained age for breast cancer overall (P = .001) and for ER-positive tumors (P = .001). Estimated cumulative risks for development of ER-positive and ER-negative tumors by age 80 in CHEK2*1100delC carriers were 20% and 3%, respectively, compared with 9% and 2%, respectively, in the general population of the United Kingdom. CONCLUSION These CHEK2*1100delC breast cancer risk estimates provide a basis for incorporating CHEK2*1100delC into breast cancer risk prediction models and into guidelines for intensified screening and follow-up.
Oncogene | 2008
Minja Laulajainen; Taru A. Muranen; Olli Carpén; Mikaela Grönholm
Mutations in the neurofibromatosis 2 tumor suppressor gene (NF2) encoding merlin (moesin–ezrin–radixin like-protein) induce tumors of the nervous system. Merlin localizes to the cell membrane where it links the actin cytoskeleton to membrane proteins. Cell proliferation is regulated by merlin in many cell types, but merlins tumor suppressor function still remains unclear. Phosphorylation has been suggested to regulate merlins activity. The C-terminal serine 518 is phosphorylated both by p21-activated kinases (PAKs) and protein kinase A (PKA). In this work, we identify a novel PKA phosphorylation site, serine 10, in the N terminus of merlin. We show that a non-phosphorylatable form of serine 10 (S10A) affects cellular morphology. Regulation of this site also influences actin cytoskeleton organization and dynamics in vivo, as merlin S10A reduces the amount of cellular F-actin and merlin S10D stabilizes F-actin filaments. By using a wound-healing assay and live cell imaging, we demonstrate that dephosphorylation of serine 10 leads to defects in migration, possibly through altered ability of the cells to form lamellipodia. This study suggests a role for merlin in mediating PKA-induced changes of the actin cytoskeleton.
Breast Cancer Research | 2011
Taru A. Muranen; Dario Greco; Rainer Fagerholm; Outi Kilpivaara; Kati Kämpjärvi; Kristiina Aittomäki; Carl Blomqvist; Päivi Heikkilä; Åke Borg; Heli Nevanlinna
IntroductionCheckpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers.MethodsIn total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method.ResultsWe discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels.Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time.ConclusionsWe have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation.
Oncogene | 2006
Mikaela Grönholm; Taru A. Muranen; G G Toby; T Utermark; C O Hanemann; E A Golemis; Olli Carpén
Merlin and ezrin are homologous proteins with opposite effects on neoplastic growth. Merlin is a tumor suppressor inactivated in the neurofibromatosis 2 disease, whereas upregulated ezrin expression is associated with increased malignancy. Merlins tumor suppressor mechanism is not known, although participation in cell cycle regulation has been suggested. To characterize merlins biological activities, we screened for molecules that would interact with merlin but not ezrin. We identified the cyclin B-binding protein and cell cycle regulator HEI10 as a novel merlin-binding partner. The interaction is mediated by the alpha-helical domain in merlin and the coiled-coil domain in HEI10 and requires conformational opening of merlin. The two proteins show partial subcellular colocalization, which depends on cell cycle stage and cell adhesion. Comparison of Schwann cells and schwannoma cultures demonstrated that the distribution of HEI10 depends on merlin expression. In transfected cells, a constitutively open merlin construct affected HEI10 protein integrity. These results link merlin to the cell cycle control machinery and may help to understand its tumor suppressor function.