Taruna Khurana
Food and Drug Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taruna Khurana.
Infection and Immunity | 2009
Crystal L. Loving; Taruna Khurana; Manuel Osorio; Gloria M. Lee; Vanessa K. Kelly; Scott Stibitz; Tod J. Merkel
ABSTRACT Anthrax toxins significantly contribute to anthrax disease pathogenesis, and mechanisms by which the toxins affect host cellular responses have been identified with purified toxins. However, the contribution of anthrax toxin proteins to dissemination, disease progression, and subsequent immunity after aerosol infection with spores has not been clearly elucidated. To better understand the role of anthrax toxins in pathogenesis in vivo and to investigate the contribution of antibody to toxin proteins in protection, we completed a series of in vivo experiments using a murine aerosol challenge model and a collection of in-frame deletion mutants lacking toxin components. Our data show that after aerosol exposure to Bacillus anthracis spores, anthrax lethal toxin was required for outgrowth of bacilli in the draining lymph nodes and subsequent progression of infection beyond the lymph nodes to establish disseminated disease. After pulmonary exposure to anthrax spores, toxin expression was required for the development of protective immunity to a subsequent lethal challenge. However, immunoglobulin (immunoglobulin G) titers to toxin proteins, prior to secondary challenge, did not correlate with the protection observed upon secondary challenge with wild-type spores. A correlation was observed between survival after secondary challenge and rapid anamnestic responses directed against toxin proteins. Taken together, these studies indicate that anthrax toxins are required for dissemination of bacteria beyond the draining lymphoid tissue, leading to full virulence in the mouse aerosol challenge model, and that primary and anamnestic immune responses to toxin proteins provide protection against subsequent lethal challenge. These results provide support for the utility of the mouse aerosol challenge model for the study of inhalational anthrax.
Infection and Immunity | 2010
Janaki K. Iyer; Taruna Khurana; Marybeth Langer; Christopher M. West; Jimmy D. Ballard; Jordan P. Metcalf; Tod J. Merkel; K. Mark Coggeshall
ABSTRACT During advanced stages of inhalation anthrax, Bacillus anthracis accumulates at high levels in the bloodstream of the infected host. This bacteremia leads to sepsis during late-stage anthrax; however, the mechanisms through which B. anthracis-derived factors contribute to the pathology of infected hosts are poorly defined. Peptidoglycan, a major component of the cell wall of Gram-positive bacteria, can provoke symptoms of sepsis in animal models. We have previously shown that peptidoglycan of B. anthracis can induce the production of proinflammatory cytokines by cells in human blood. Here, we show that biologically active peptidoglycan is shed from an active culture of encapsulated B. anthracis strain Ames in blood. Peptidoglycan is able to bind to surfaces of responding cells, and internalization of peptidoglycan is required for the production of inflammatory cytokines. We also show that the peptidoglycan traffics to lysosomes, and lysosomal function is required for cytokine production. We conclude that peptidoglycan of B. anthracis is initially bound by an unknown extracellular receptor, is phagocytosed, and traffics to lysosomes, where it is degraded to a product recognized by an intracellular receptor. Binding of the peptidoglycan product to the intracellular receptor causes a proinflammatory response. These findings provide new insight into the mechanism by which B. anthracis triggers sepsis during a critical stage of anthrax disease.
Annals of Allergy Asthma & Immunology | 2014
Taruna Khurana; Maggie Collison; Fook Tim Chew; Jay E. Slater
BACKGROUND The IgE response to cockroach allergens is thought to be associated with asthma. German cockroach (GCr) allergen extract is a complex mixture of allergens, and the identification and characterization of immunodominant allergens is important for the effective diagnosis and treatment of GCr-induced asthma. OBJECTIVE To characterize a novel GCr allergen homologous to the American cockroach allergen Per a 3. METHODS GCr-specific avian monoclonal antibodies were used for direct immunoprecipitation of specific targets from whole-body GCr extract. Precipitated protein was identified by mass spectrometry and sequence analysis. Putative recombinant protein also was expressed, purified, and used for determination of allergenicity, determined by IgE enzyme-linked immunosorbent assay with serum from 61 GCr-allergic patients. The identified target also was analyzed for heat stability using a bead-based assay. RESULTS The immunoprecipitated target of monoclonal antibody 2A1 was identified as a novel allergen of GCr homologous to American cockroach allergen Per a 3. This homolog, designated Bla g 3, has an apparent mass of 78 kDa, can be measured in GCr extract using antibody 2A1, and is a heat-stable protein. Screening of 61 serum samples from GCr-allergic patients showed a 22% prevalence of Bla g 3-specific IgE. CONCLUSION Bla g 3 is a GCr allergen with structural homology to American cockroach allergen Per a 3.
PLOS ONE | 2015
Taruna Khurana; Ekaterina Dobrovolskaia; Jessica R. Shartouny; Jay E. Slater
Background German cockroach (GCr) allergens induce IgE responses and may cause asthma. Commercial GCr allergen extracts are variable and existing assays may not be appropriate for determining extract composition and potency. Objective Our aim was to develop a multiplex antibody/bead-based assay for assessment of GCr allergen extracts. Methods Single chain fragment variable (scFv) antibodies against GCr were obtained by screening libraries derived from naïve human lymphocytes and hyperimmunized chicken splenocytes and bone marrow. Selected clones were sequenced and characterized by immunoblotting. Eighteen scFv antibodies (17 chicken, 1 human) coupled to polystyrene beads were used in this suspension assay; binding of targeted GCr allergens to antibody-coated beads was detected using rabbit antisera against GCr, and against specific allergens rBla g 1, rBla g 2, and rBla g 4. The assay was tested for specificity, accuracy, and precision. Extracts were also compared by IgE competition ELISA. Results Chicken scFv’s generated eight different binding patterns to GCr proteins from 14 to 150 kDa molecular weight. Human scFv’s recognized a 100 kDa GCr protein. The multiplex assay was found to be specific and reproducible with intra-assay coefficient of variation (CV) of 2.64% and inter-assay CV of 10.0%. Overall potencies of various GCr extracts were calculated using mean logEC50s for eight selected scFvs. Overall potency measures were also analyzed by assessing the contributions to potency of each target. Conclusions An scFv antibody-based multiplex assay has been developed capable of simultaneously measuring different proteins in a complex mixture, and to determine the potencies and compositions of allergen extracts.
Molecular Immunology | 2014
Geoffrey A. Mueller; John Ankney; Jill Glesner; Taruna Khurana; Lori L. Edwards; Lars C. Pedersen; Lalith Perera; Jay E. Slater; Anna Pomés; Robert E. London
Bla g 1 is a major allergen from Blatella germanica and one of the primary allergens used to assess cockroach allergen exposure. The epitope of an anti-Bla g 1 scFv was mapped in order to better understand cross reactivity with other group 1 cockroach allergens and patient IgE epitopes. X-ray crystallography was used to determine the structure of the scFv. The scFv epitope on Bla g 1 was located by alanine scanning site-directed mutagenesis and ELISA. Twenty-six rBla g 1-GST alanine mutants were evaluated for variations in binding to the scFv compared to the wild type allergen. Six mutants showed a significant difference in scFv binding affinity. These mutations clustered to form a discontinuous epitope mainly comprising two helices of Bla g 1. The allergen-scFv complex was modeled based on the results, and the epitope region was found to have low sequence similarity with Per a 1, especially among the residues identified as functionally important for the scFv binding to Bla g 1. Indeed, the scFv failed to bind Per a 1 in American cockroach extract. The scFv was unable to inhibit the binding of IgE antibodies from a highly cockroach allergic patient to Bla g 1. Based on the surface area of Bla g 1 occluded by the scFv, putative regions of patient IgE-Bla g 1 interactions can be inferred. This scFv could be best utilized as a capture antibody in an IgE detection ELISA, or to differentiate Bla g 1 from Per a 1 in environmental exposure assays.
Annals of Allergy Asthma & Immunology | 2016
Taruna Khurana; Shoshana Newman-Lindsay; Philip R. Young; Jay E. Slater
BACKGROUND Dogs are an important source of indoor allergens that cause rhinoconjunctivitis, urticaria, and asthma in sensitized individuals. Can f 1 is reported as a major dog allergen, but other allergens have also been identified. Identification of immunologically important allergens is important for both the diagnosis and treatment of dog allergy. OBJECTIVE To identify and characterize the canine NPC2 protein, a novel dog allergen. METHODS We screened commercial and laboratory-generated aqueous dog extracts by 2-dimensional polyacrylamide gel electrophoresis with IgE immunoblotting using human serum samples from 71 dog-allergic individuals. A target of interest was excised from the gel and sequenced. Canine NPC2 sequence was generated, and recombinant proteins expressed in yeast and bacteria were used to determine allergenicity. An IgE enzyme-linked immunosorbent assay was used for screening 71 dog-positive and 30 dog-negative serum samples. RESULTS A 16-kDa protein (pK = 8.5) in dog allergen extracts was recognized by specific IgE. The protein was identified by sequencing as a CE1 protein or NPC2 protein. Human IgE bound to recombinant protein was expressed in both yeast and bacteria. Ten (14%) of 71 individuals had specific IgE to NPC2 protein from bacteria, and 12 (17%) had IgE to NPC2 protein from yeast. Binding of pooled dog-allergic serum IgE to the dust mite protein Der p 2 was partially inhibited by recombinant NPC2 protein. CONCLUSION NPC2 protein, a member of the MD-2-related lipid recognition family, is identified as a dog allergen (Can f 7), with an apparent seroprevalence of 10% to 20%.
PLOS ONE | 2017
Christopher P. Mattison; Taruna Khurana; Matthew R. Tarver; Christopher B. Florane; Casey C. Grimm; Suman B. Pakala; Carrie Cottone; Claudia Riegel; Yvette Bren-Mattison; Jay E. Slater
Cockroach allergens can lead to serious allergy and asthma symptoms. Termites are evolutionarily related to cockroaches, cohabitate in human dwellings, and represent an increasing pest problem in the United States. The Formosan subterranean termite (Coptotermes formosanus) is one of the most common species in the southern United States. Several assays were used to determine if C. formosanus termite proteins cross-react with cockroach allergens. Expressed sequence tag and genomic sequencing results were searched for homology to cockroach allergens using BLAST 2.2.21 software. Whole termite extracts were analyzed by mass-spectrometry, immunoassay with IgG and scFv antibodies to cockroach allergens, and human IgE from serum samples of cockroach allergic patients. Expressed sequence tag and genomic sequencing results indicate greater than 60% similarity between predicted termite proteins and German and American cockroach allergens, including Bla g 2/Per a 2, Bla g 3/Per a 3, Bla g 5, Bla g 6/Per a 6, Bla g 7/Per a 7, Bla g 8, Per a 9, and Per a 10. Peptides from whole termite extract were matched to those of the tropomyosin (Bla g 7), arginine kinase (Per a 9), and myosin (Bla g 8) cockroach allergens by mass-spectrometry. Immunoblot and ELISA testing revealed cross-reaction between several proteins with IgG and IgE antibodies to cockroach allergens. Several termite proteins, including the hemocyanin and tropomyosin orthologs of Blag 3 and Bla g 7, were shown to crossreact with cockroach allergens. This work presents support for the hypothesis that termite proteins may act as allergens and the findings could be applied to future allergen characterization, epitope analysis, and clinical studies.
Annals of Allergy Asthma & Immunology | 2017
Taruna Khurana; Jennifer L. Bridgewater; Ronald L. Rabin
OBJECTIVE To review allergenic extracts used to diagnose or treat insect allergies, including how the extracts are manufactured and their measurements of potency or concentration. DATA SOURCES Peer-reviewed articles derived from searching PubMed (National Center for Biotechnology Information) about insect allergies and extract preparation. Encyclopedia of Life (http://www.eol.org/) and http://allergome.org/ were also referenced for background information on insects and associated allergens. STUDY SELECTIONS Search terms used for the PubMed searches included insect allergens and allergies, Apidae, Vespidae, fire ants, cockroach allergies, insect allergen extract preparation, and standardization. RESULTS Humans may be sensitized to insect allergens by inhalation or through stings. Cockroaches and moths are predominantly responsible for inhalation insect allergy and are a major indoor allergen in urban settings. Bees, fire ants, and wasps are responsible for sting allergy. In the United States, there are multiple insect allergen products commercially available that are regulated by the US Food and Drug Administration. Of those extracts, honeybee venom and insect venom proteins are standardized with measurements of potency. The remaining insect allergen extracts are nonstandardized products that do not have potency measurements. CONCLUSION Sensitization to inhalational and stinging insect allergens is reported worldwide. Crude insect allergen extracts are used for diagnosis and specific immunotherapy. A variety of source materials are used by different manufacturers to prepare these extracts, which may result in qualitative differences that are not reflected in measurements of potency or protein concentration.
The Journal of Allergy and Clinical Immunology | 2014
Jay E. Slater; Allison Zoch; Shoshana Newman-Gerhardt; Taruna Khurana
The Journal of Allergy and Clinical Immunology | 2014
Taruna Khurana; Maggie Collison; Jay E. Slater