Tasia M. Taxis
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tasia M. Taxis.
Genetics Selection Evolution | 2011
Mahdi Saatchi; Mathew C. McClure; Stephanie D. McKay; Megan M. Rolf; JaeWoo Kim; Jared E. Decker; Tasia M. Taxis; Richard H. Chapple; Holly R. Ramey; Sally L Northcutt; Stewart Bauck; Brent Woodward; Jack C. M. Dekkers; Rohan L. Fernando; Robert D. Schnabel; Dorian J. Garrick; Jeremy F. Taylor
BackgroundGenomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.MethodsDeregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.ResultsAccuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.ConclusionsThese results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.
Animal Genetics | 2012
M. C. McClure; Holly R. Ramey; Megan M. Rolf; Stephanie D. McKay; Jared E. Decker; Richard H. Chapple; JaeWoo Kim; Tasia M. Taxis; Robert L. Weaber; Robert D. Schnabel; Jeremy F. Taylor
Summary We performed a genome-wide association study for Warner–Bratzler shear force (WBSF), a measure of meat tenderness, by genotyping 3360 animals from five breeds with 54 790 BovineSNP50 and 96 putative single-nucleotide polymorphisms (SNPs) within μ-calpain [HUGO nomenclature calpain 1, (mu/I) large subunit; CAPN1] and calpastatin (CAST). Within- and across-breed analyses estimated SNP allele substitution effects (ASEs) by genomic best linear unbiased prediction (GBLUP) and variance components by restricted maximum likelihood under an animal model incorporating a genomic relationship matrix. GBLUP estimates of ASEs from the across-breed analysis were moderately correlated (0.31–0.66) with those from the individual within-breed analyses, indicating that prediction equations for molecular estimates of breeding value developed from across-breed analyses should be effective for genomic selection within breeds. We identified 79 genomic regions associated with WBSF in at least three breeds, but only eight were detected in all five breeds, suggesting that the within-breed analyses were underpowered, that different quantitative trait loci (QTL) underlie variation between breeds or that the BovineSNP50 SNP density is insufficient to detect common QTL among breeds. In the across-breed analysis, CAPN1 was followed by CAST as the most strongly associated WBSF QTL genome-wide, and associations with both were detected in all five breeds. We show that none of the four commercialized CAST and CAPN1SNP diagnostics are causal for associations with WBSF, and we putatively fine-map the CAPN1 causal mutation to a 4581-bp region. We estimate that variation in CAST and CAPN1 explains 1.02 and 1.85% of the phenotypic variation in WBSF respectively.
PLOS ONE | 2009
Jolena N. Fleming-Waddell; Gayla R. Olbricht; Tasia M. Taxis; Jason D. White; Tony Vuocolo; Bruce A. Craig; Ross L. Tellam; Mike K. Neary; Noelle E. Cockett; Christopher A. Bidwell
Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specific DLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in beta-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1 expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia.
Nucleic Acids Research | 2015
Tasia M. Taxis; Sara Wolff; Sarah J. Gregg; Nicholas O. Minton; Chiqian Zhang; Jingjing Dai; Robert D. Schnabel; Jeremy F. Taylor; M. S. Kerley; J. Chris Pires; W. R. Lamberson; Gavin C. Conant
By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure.
Animal Genetics | 2014
Christopher A. Bidwell; Jolena N. Waddell; Tasia M. Taxis; Hui Yu; Ross L. Tellam; Mike K. Neary; Noelle E. Cockett
The callipyge phenotype in sheep involves substantial postnatal muscle hypertrophy and other changes to carcass composition. A single nucleotide polymorphism in the DLK1-DIO3 imprinted gene cluster alters gene expression of the paternal allele-specific protein-coding genes and several maternal allele-specific long noncoding RNA and microRNA when the mutation is inherited in cis. The inheritance pattern of the callipyge phenotype is polar overdominant because muscle hypertrophy only occurs in heterozygous animals that inherit a normal maternal allele and the callipyge SNP on the paternal allele (+/C). We examined the changes of gene expression of four major transcripts from the DLK1-DIO3 cluster and four myosin isoforms during the development of muscle hypertrophy in the semimembranosus as well as in the supraspinatus that does not undergo hypertrophy. The homozygous (C/C) animals had an intermediate gene expression pattern for the paternal allele-specific genes and two myosin isoforms, indicating a biological activity that was insufficient to change muscle mass. Transcriptome analysis was conducted by RNA sequencing in the four callipyge genotypes. The data show that homozygous animals (C/C) have lower levels of gene expression at many loci relative to the other three genotypes. A number of the downregulated genes are putative targets of the maternal allele-specific microRNA with gene ontology, indicating regulatory and cell signaling functions. These results suggest that the trans-effect of the maternal noncoding RNA and associated miRNA is to stabilize the expression of a number of regulatory genes at a functional, but low level to make the myofibers of homozygous (C/C) lambs less responsive to hypertrophic stimuli of the paternal allele-specific genes.
Mbio | 2017
Sara Wolff; Melinda J. Ellison; Yue Hao; R. R. Cockrum; Kathy J. Austin; Michael Baraboo; Katherine Burch; Hyuk Lee; Taylor Maurer; Rocky Patil; Andrea Ravelo; Tasia M. Taxis; Huan Truong; W. R. Lamberson; K. M. Cammack; Gavin C. Conant
BackgroundGrazing mammals rely on their ruminal microbial symbionts to convert plant structural biomass into metabolites they can assimilate. To explore how this complex metabolic system adapts to the host animal’s diet, we inferred a microbiome-level metabolic network from shotgun metagenomic data.ResultsUsing comparative genomics, we then linked this microbial network to that of the host animal using a set of interface metabolites likely to be transferred to the host. When the host sheep were fed a grain-based diet, the induced microbial metabolic network showed several critical differences from those seen on the evolved forage-based diet. Grain-based (e.g., concentrate) diets tend to be dominated by a smaller set of reactions that employ metabolites that are nearer in network space to the host’s metabolism. In addition, these reactions are more central in the network and employ substrates with shorter carbon backbones. Despite this apparent lower complexity, the concentrate-associated metabolic networks are actually more dissimilar from each other than are those of forage-fed animals. Because both groups of animals were initially fed on a forage diet, we propose that the diet switch drove the appearance of a number of different microbial networks, including a degenerate network characterized by an inefficient use of dietary nutrients. We used network simulations to show that such disparate networks are not an unexpected result of a diet shift.ConclusionWe argue that network approaches, particularly those that link the microbial network with that of the host, illuminate aspects of the structure of the microbiome not seen from a strictly taxonomic perspective. In particular, different diets induce predictable and significant differences in the enzymes used by the microbiome. Nonetheless, there are clearly a number of microbiomes of differing structure that show similar functional properties. Changes such as a diet shift uncover more of this type of diversity.
Reproduction in domestic ruminants VII. Proceedings of the Eighth International Symposium on Reproduction in Domestic Ruminants, Anchorage, Alaska, September 2010. | 2010
Jeremy F. Taylor; Richard H. Chapple; Jared E. Decker; S. J. Gregg; JaeWoo Kim; Stephanie D. McKay; Holly R. Ramey; Megan M. Rolf; Tasia M. Taxis; Robert D. Schnabel
Next generation sequencing platforms have democratized genome sequencing. Large genome centers are no longer required to produce genome sequences costing millions. A few lanes of paired-end sequence on an Illumina Genome Analyzer, costing <
Frontiers in Genetics | 2018
Tasia M. Taxis; Marcus E. Kehrli; Rui D’Orey-Branco; E. Casas
10,000, will produce more sequence than generated only a few years ago to produce the human and cow assemblies. The de novo assembly of large numbers of short reads into a high-quality whole-genome sequence is now technically feasible and will allow the whole genome sequencing and assembly of a broad spectrum of ruminant species. Next-generation sequencing instruments are also proving very useful for transcriptome or resequencing projects in which the entire RNA population produced by a tissue, or the entire genomes of individual animals are sequenced, and the produced reads are aligned to a reference assembly. We have used this strategy to examine gene expression differences in tissues from cattle differing in feed efficiency, to perform genome-wide single nucleotide polymorphism discovery for the construction of ultrahigh-density genotyping assays, and in combination with genome-wide association analysis, for the identification of mutations responsible for Mendelian diseases. The new 800K SNP bovine genotyping assays possess the resolution to map trait associations to the locations of individual genes and the 45 million polymorphisms identified in > 180X genome sequence coverage on over 200 animals can be queried to identify the polymorphisms present within positional candidate genes. These new tools should rapidly allow the identification of genes and mutations underlying variation in cattle production and reproductive traits.
Archive | 2017
Sara Wolff; Melinda J. Ellison; Yue Hao; R. R. Cockrum; Kathy J. Austin; Michael Baraboo; Katherine Burch; Hyuk Lee; Taylor Maurer; Rocky Patil; Andrea Ravelo; Tasia M. Taxis; Huan Truong; W. R. Lamberson; K. M. Cammack; Gavin C. Conant
Bovine leukemia virus (BLV) affects cattle health and productivity worldwide, causing abnormal immune function and immunosuppression. Transfer RNA fragments (tRFs) are known to be involved in inhibition of gene expression and have been associated with stress and immune response, tumor growth, and viral infection. The objective of this study was to identify tRFs associated with antibody response to BLV in Holstein cattle. Sera from 14 animals were collected to establish IgG reactivity to BLV by ELISA. Seven animals were seropositive (positive group) and seven were seronegative (negative group) for BLV exposure. Leukocytes from each animal were collected and tRFs were extracted for sequencing. tRF5GlnCTG, tRF5GlnTTG, and tRF5HisGTG, were significantly different between seropositive and seronegative groups (P < 0.0067). In all cases the positive group had a lower number of normalized sequences for tRFs when compared to the negative group. Result suggests that tRF5s could potentially be used as biomarkers to establish exposure of cattle to BLV.
Journal of Animal Science | 2016
A. N. Abrams; C. J. Clarkson; Kathy J. Austin; Melinda J. Ellison; H. C. Cunningham; Gavin C. Conant; W. R. Lamberson; Tasia M. Taxis; K. M. Cammack