Tasso Miliotis
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tasso Miliotis.
Journal of Chromatography A | 2000
K. Wagner; K. Racaityte; Klaus K. Unger; Tasso Miliotis; L.E. Edholm; Rainer Bischoff; György Marko-Varga
Current developments in drug discovery in the pharmaceutical industry require highly efficient analytical systems for protein mapping providing high resolution, robustness, sensitivity, reproducibility and a high throughput of samples. The potential of two-dimensional (2D) HPLC as a complementary method to 2D-gel electrophoresis is investigated, especially in view of speed and repeatability. The method will be applied for proteins of a molecular mass <20 000 which are not well resolved in 2D-gel electrophoresis. The 2D-HPLC system described in this work consisted of anion- or cation-exchange chromatography in the first dimension and reversed-phase chromatography in the second dimension. We used a comprehensive two-dimensional approach based on different separation speeds. In the first dimension 2.5 microm polymeric beads bonded with diethylaminoethyl and sulfonic acid groups, respectively, were applied as ion exchangers and operated at a flow-rate of 1 ml/min. To achieve very high-speed and high-resolution separations in the second dimension, short columns of 14 x 4.6 mm I.D. with 1.5 microm n-octadecyl bonded, non-porous silica packings were chosen and operated at a flow-rate of 2.5 ml/min. Two reversed-phase columns were used in parallel in the second dimension. The analyte fractions from the ion-exchange column were transferred alternatively to one of the two reversed-phase columns using a 10-port switching valve. The analytes were deposited in an on-column focusing mode on top of one column while the analytes on the second column were eluted. Proteins, which were not completely resolved in the first dimension can, in most cases, be baseline-separated in the second dimension. The total value of peak capacity was calculated to 600. Fully unattended overnight runs for repeatability studies proved the applicability of the system. The values for the relative standard deviation (RSD) of the retention times of proteins were less than 1% (n = 15), while the RSDs of the peak areas were less than 15% (n = 15) on average. The limit of detection was 300 ng of protein on average and decreased to 50 ng for ovalbumin. The 2D-HPLC system offered high-resolution protein separations with a total analysis time of less than 20 min, equivalent to the run time of the first dimension.
Journal of Proteomics | 2010
Jan Ottervald; Bo Franzén; Kerstin Nilsson; Lars I. Andersson; Mohsen Khademi; Bodil Eriksson; Sven Kjellström; György Marko-Varga; Ákos Végvári; Robert A. Harris; Thomas Laurell; Tasso Miliotis; Darius Matusevicius; Hugh Salter; Mats Ferm; Tomas Olsson
Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that results in damage to myelin sheaths and axons in the central nervous system and which preferentially affects young adults. We performed a proteomics-based biomarker discovery study in which cerebrospinal fluid (CSF) from MS and control individuals was analyzed (n=112). Ten candidate biomarkers were selected for evaluation by quantitative immunoassay using an independent cohort of MS and control subjects (n=209). In relapsing-remitting MS (RRMS) patients there were significant increases in the CSF levels of alpha-1 antichymotrypsin (A1AC), alpha-1 macroglobulin (A2MG) and fibulin 1 as compared to control subjects. In secondary progressive MS (SPMS) four additional proteins (contactin 1, fetuin A, vitamin D binding protein and angiotensinogen (ANGT)) were increased as compared to control subjects. In particular, ANGT was increased 3-fold in SPMS, indicating a potential as biomarker of disease progression in MS. In PPMS, A1AC and A2MG exhibit significantly higher CSF levels than controls, with a trend of increase for ANGT. Classification models based on the biomarker panel could identify 70% of the RRMS and 80% of the SPMS patients correctly. Further evaluation was conducted in a pilot study of CSF from RRMS patients (n=36), before and after treatment with natalizumab.
Journal of Mass Spectrometry | 2000
Tasso Miliotis; Sven Kjellström; Johan Nilsson; Thomas Laurell; Lars‐Erik Edholm; György Marko-Varga
A piezoelectric flow-through microdispenser interfacing capillary liquid chromatography (LC) with matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS) was developed for the identification of biomolecules. The MALDI target plate was placed on a computer controlled high-resolution x-y stage, on to which the column effluent was deposited as discrete spots, which thereby facilitated tracing of the chromatographic separation. The entire target plate was sprayed with a homogeneous layer of alpha-cyano-4-cinnamic acid mixed with nitrocellulose by using an air-brush. Hence the tedious manual handling of a micropipetter applying matrix solution on top of each fraction collected spot was avoided. The pre-made target plates were stable for at least 3 weeks if kept in darkness at room temperature, which easily allowed re-analysis of dispensed sample spots. The integrated microsystem was characterized and optimized by means of fluidics, dispersion, operational stability and sensitivity parameters. The dispensing unit was developed specifically to match high-resolution capillary LC separations using a dispenser with an internal volume from inlet to the ejecting nozzle of 250 nl. Minimizing dead volumes was crucial in order to maintain the chromatographic resolution. The volume of the ejected droplets was of the order of 60 pl. Successful separations of seven immunoregulating peptides were made: ACTH 1-17, bradykinin, enkephalin, angiotensin III, angiotensin II, angiotensin I and ACTH 18-39. On-line sample dispensing on the target plate in combination with trace enrichment followed by automated MALDI-TOF MS identification is demonstrated, reaching a sensitivity of 100 amol.
Hrc-journal of High Resolution Chromatography | 2000
Klaus K. Unger; K. Racaityte; K. Wagner; Tasso Miliotis; L.E. Edholm; R. Bischoff; György Marko-Varga
The interactive modes of High Performance Liquid Chromatography (HPLC) of proteins provide a platform for the construction of a multidimensional HPLC system coupled to mass spectrometry. We present a system composed of both anion and cation exchanger columns, in the first dimension, and n-octadecyl bonded 1.5 μm nonporous silica columns in the second dimension. Both columns are operated under gradient conditions. A system suitability test with standard proteins showed that the total analysis can be performed within about 20 minutes. The fractions taken from the ion exchanger column are directly analyzed within one minute on the reversed phase column at a high flow rate. Two reversed phase columns are applied and operated alternatively: while the first column performs the separation within one minute, the analytes leaving the first dimension are enriched in an on-column focusing mode on top of the second column. The sample clean-up and enrichment is performed on a novel type of restricted access cation exchanger column with internal sulfonic acid groups and external diol groups. The columns exhibit a molecular weight exclusion limit for globular proteins of about 15 kDa. Our next studies will be directed towards the analysis of proteins and peptides from extracts of fibroblasts.
Journal of Proteomics | 2009
Henrik Gonzalez; Jan Ottervald; Kerstin Nilsson; Niclas Sjögren; Tasso Miliotis; Helena von Bahr; Mohsen Khademi; Bodil Eriksson; Sven Kjellström; Ákos Végvári; Robert A. Harris; György Marko-Varga; Kristian Borg; Johan Nilsson; Thomas Laurell; Tomas Olsson; Bo Franzén
Survivors of poliomyelitis often develop increased or new symptoms decades after the acute infection, a condition known as post-polio syndrome (PPS). The condition affects 20-60% of previous polio patients, making it one of the most common causes of neurological deficits worldwide. The underlying pathogenesis is not fully understood and accurate diagnosis is not feasible. Herein we investigated whether it was possible to identify proteomic profile aberrations in the cerebrospinal fluid (CSF) of PPS patients. CSF from 15 patients with well-defined PPS were analyzed for protein expression profiles. The results were compared to data obtained from nine healthy controls and 34 patients with other non-inflammatory diseases which served as negative controls. In addition, 17 samples from persons with secondary progressive multiple sclerosis (SPMS) were added as relevant age-matched references for the PPS samples. The CSF of persons with PPS displayed a disease-specific and highly predictive (p=0.0017) differential expression of five distinct proteins: gelsolin, hemopexin, peptidylglycine alpha-amidating monooxygenase, glutathione synthetase and kallikrein 6, respectively, in comparison with the control groups. An independent ELISA confirmed the increase of kallikrein 6. We suggest that these five proteins should be further evaluated as candidate biomarkers for the diagnosis and development of new therapies for PPS patients.
Journal of Chromatography A | 2000
Tasso Miliotis; Sven Kjellström; Patrik Önnerfjord; Johan Nilsson; Thomas Laurell; Lars Erik Edholm; György Marko-Varga
An integrated protein microcharacterization/identification platform has been developed. The system has been designed to allow a high flexibility in order to tackle challenging analytical problems. The platform comprises a cooled microautosampler, an integrated system for microcolumn HPLC, and a capillary reversed-phase column that is interfaced to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) system via a low internal volume flow-through microdispenser. The chromatographic separation is continuously transferred onto a MALDI target plate as discrete spots as the dispenser ejects bursts of droplets of the column effluent in a precise array pattern. A refrigerated microfraction collector was coupled to the outlet of the flow-through microdispenser enabling enrichment and re-analysis of interesting fractions. The use of target plates pre-coated with matrix simplified and increased the robustness of the system. By including a separation step prior to the MALDI-TOF-MS analysis and hereby minimizing suppression effects allowed us to obtain higher sequence coverage of proteins compared to conventional MALDI sample preparation methodology. Additionally, synthetic peptides corresponding to autophosphorylated forms of the tryptic fragment 485-496 (ALGADDSYYTAR) of tyrosine kinase ZAP-70 were identified at sensitivities reaching 150 amol.
Journal of Chromatography B: Biomedical Sciences and Applications | 2001
Tasso Miliotis; Per Olof Ericsson; György Marko-Varga; Robert Svensson; Johan Nilsson; Thomas Laurell; Rainer Bischoff
A methodology for the rapid and quantitative analysis of phosphorylation sites in proteins is presented. The coupling of capillary high-performance liquid chromatography (HPLC) to electrospray ionization mass spectrometry (ESI-MS) allowed one to distinguish phosphorylation sites based on retention time and mass difference from complex peptide mixtures. The methodology was first evaluated and validated for a mixture of non-, mono-, and dityrosine-phosphorylated synthetic peptides, corresponding to the tryptic fragment 485-496 (ALGADDSYYTAR) of the human protein tyrosine kinase ZAP-70. The limits of detection for the non-, mono- and diphosphorylated peptides were about 15, 40 and 100 fmol, respectively, when using a 300 microm I.D. column. Application of the method was extended to identify phosphopeptides generated from a trypsin digest of recombinant autophosphorylated ZAP-70, in particular with respect to quantifying the status at the regulatory phosphorylation sites Tyr-492 and Tyr-493. Combination of chromatographic and on-line tandem mass spectrometry data allowed one to ascertain the identity of the detected peptides, a prerequisite to analyses in more complex biological samples. As an extension to the methodology described above, we evaluated the feasibility of interfacing capillary HPLC to matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), using a micromachined piezoelectric flow-through dispenser as the interface. This enabled direct arraying of chromatographically separated components onto a target plate that was precoated with matrix for subsequent analysis by MALDI-TOF-MS without further sample handling.
Drug Metabolism and Disposition | 2011
Tasso Miliotis; Liaqat Ali; Johan Palm; Anders J Lundqvist; Martin Ahnoff; Tommy B. Andersson; Constanze Hilgendorf
The quantification of P-glycoprotein [P-gp, ABCB1, multidrug resistance 1 (MDR1)] protein in biological matrices is considered a key factor missing for useful translation of in vitro functional data to the in vivo situation and for comparison of transporter data among different in vitro models. In the present study a liquid chromatography (LC)-mass spectrometry method was developed to quantify P-gp membrane protein levels in different biological matrices. The amount of P-gp transporter protein was measured in Caco-2 cell monolayers and in inside-out human embryonic kidney (HEK)-MDR1 vesicles. From both in vitro systems, two preparations with different functionality were used. Transporter function was determined as digoxin efflux in Caco-2 cell monolayers and N-methylquinidine (NMQ) uptake in membrane vesicles, and, in addition, mRNA expression in the Caco-2 monolayers was measured. The results showed an excellent relationship between NMQ uptake functionality in inside-out HEK-MDR1 vesicles and protein contents. Similar concordance between the digoxin efflux and P-gp content in different Caco-2 cell cultures was observed, whereas mRNA levels are indicative of increased P-gp content and activity in older Caco-2 cultures, however, not yielding the same quantitative relationship. The results from both Caco-2 and HEK-MDR1 membrane vesicles confirm that the protein content is directly related to the level of activity in the respective system. The method presented here to quantify P-gp protein by LC-multiple reaction monitoring will facilitate the development of future methodologies to bridge between expression systems and cell/tissue models and to scale from in vitro models to whole organs.
Journal of Neuroscience Methods | 2001
Tasso Miliotis; György Marko-Varga; Johan Nilsson; Thomas Laurell
Here we report on the development of a proteomic platform utilizing a piezoelectric flow-through dispensing unit made from silicon microstructures. The use of a novel surface coating, where matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI MS) targets were uniformly precoated with a thin film of matrix/nitrocellulose, made the sample preparation straightforward and enabled the enrichment and analysis of proteins at low levels in proteomics samples. We demonstrate this by analyzing excised spots in a biological sample originating from a human fetal fibroblast cell line that was subjected to 2D gel-electrophoresis. Furthermore, a sample deposition rate below 30 Hz results in an increased analyte density on the dispensed sample spot, rendering signal amplification. In general, the sensitivity for proteins and peptides can be enhanced 10-50 times compared to traditional MALDI sample preparation techniques.
Journal of Chromatography A | 2013
Tasso Miliotis; Claes Lindberg; Kristina F. Semb; Marleen van Geest; Sven Kjellström
A rapid method for the determination of the sum of free desmosine and isodesmosine in human plasma and urine is described. Efficient sample clean-up prior to LC-MS/MS analysis is mandatory for detection of free desmosines in plasma samples. The combination of ultra-filtration and a two-step solid phase extraction minimizes the sample complexity and ion suppression effects. The flow through from the ultra filtration is passed through a C18 resin and then the target analytes are trapped and enriched on a mixed mode solid phase extraction material. The combination of these three orthogonal sample preparation steps allows detection of endogenous free desmosines in plasma from healthy individuals. An analytical column packed with porous graphitic carbon material enables the retention of the polar desmosine analytes, which are measured by electrospray ionization tandem mass spectrometry. Deuterium labeled isodesmosine is added as internal standard and a linear calibration curve was constructed in the range of 0.1-2.0 nmol/L for plasma samples and 5-200 nmol/L for urine samples. These results demonstrate that the described LC-MS/MS method provides sensitive, repeatable and accurate quantification of free desmosines in plasma and urine samples.