Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana A. Stroganova is active.

Publication


Featured researches published by Tatiana A. Stroganova.


Biological Psychiatry | 2007

Excess of high frequency electroencephalogram oscillations in boys with autism.

Elena V. Orekhova; Tatiana A. Stroganova; Gudrun Nygren; Marina M. Tsetlin; Irina N. Posikera; Christopher Gillberg; Mikael Elam

BACKGROUND An elevated excitation/inhibition ratio has been suggested as one mechanism underpinning autism. An imbalance between cortical excitation and inhibition may manifest itself in electroencephalogram (EEG) abnormalities in the high frequency range. The aim of this study was to investigate whether beta and gamma range EEG abnormalities are characteristic for young boys with autism (BWA). METHODS EEG was recorded during sustained visual attention in two independent samples of BWA from Moscow and Gothenburg, aged 3 to 8 years, and in age matched typically developing boys (TDB). High frequency EEG spectral power was analyzed. RESULTS In both samples, BWA demonstrated a pathological increase of gamma (24.4-44.0 Hz) activity at the electrode locations distant from the sources of myogenic artefacts. In both samples, the amount of gamma activity correlated positively with degree of developmental delay in BWA. CONCLUSIONS The excess of high frequency oscillations may reflect imbalance in the excitation-inhibition homeostasis in the cortex. Given the important role of high frequency EEG rhythms for perceptual and cognitive processes, early and probably genetically determined abnormalities in the neuronal mechanisms generating high frequency EEG rhythms may contribute to development of the disorder. Further studies are needed to investigate the specificity of the findings for autism.


Neuroscience Letters | 2008

Sensory gating in young children with autism: Relation to age, IQ, and EEG gamma oscillations

Elena V. Orekhova; Tatiana A. Stroganova; Andrey O. Prokofyev; Gudrun Nygren; Cristopher Gillberg; Mikael Elam

Unusual reactions to auditory stimuli are often observed in autism and may relate to ineffective inhibitory modulation of sensory input (sensory gating). A previous study of P50 sensory gating did not reveal abnormalities in high-functioning school age children [C. Kemner, B. Oranje, M.N. Verbaten, H. van Engeland, Normal P50 gating in children with autism, J. Clin. Psychiatry 63 (2002) 214-217]. Sensory gating deficit may, however, characterize younger children with autism or be a feature of retarded children with autism, reflecting imbalance of neuronal excitation/inhibition in these cohorts. We applied a paired clicks paradigm to study P50 sensory gating, and its relation to IQ and EEG gamma spectral power (as a putative marker of cortical excitability), in young (3-8 years) children with autism (N=21) and age-matched typically developing children (N=21). P50 suppression in response to the second click was normal in high-functioning children with autism, but significantly (p<0.03) reduced in those with mental retardation. P50 gating improved with age in both typically developing children and those with autism. Higher ongoing EEG gamma power corresponded to lower P50 suppression in autism (p<0.02), but not in control group. The data suggest that ineffective inhibitory control of sensory processing is characteristic for retarded children with autism and may reflect excitation/inhibition imbalance in this clinical group.


Clinical Neurophysiology | 2007

Abnormal EEG lateralization in boys with autism

Tatiana A. Stroganova; Gudrun Nygren; Marina M. Tsetlin; Irina N. Posikera; Christopher Gillberg; Mikael Elam; Elena V. Orekhova

OBJECTIVE Functional brain abnormalities associated with autism in 3-8-year-old boys were studied with EEG recorded under controlled experimental condition of sustained visual attention and behavioral stillness. METHODS EEG was recorded in two independent samples of boys with autism (BWA) from Moscow (N=21) and Gothenburg (N=23) and a corresponding number of age-matched typically developing boys (TDB). EEG spectral power (SP) and SP interhemispheric asymmetry within delta, theta and alpha bands were analyzed. RESULTS BWA comprised a non-homogeneous group in relation to theta and alpha SP. When four outliers were excluded the only between-group difference in absolute SP was a higher amount of prefrontal delta in BWA. BWA of both samples demonstrated atypical leftward broadband EEG asymmetry with a maximum effect over the mid-temporal regions. Concurrently, the normal leftward asymmetry of mu rhythm was absent in BWA. CONCLUSIONS The abnormal broadband EEG asymmetry in autism may point to a diminished capacity of right temporal cortex to generate EEG rhythms. The concurrent lack of normal leftward asymmetry of mu rhythm suggests that abnormalities in EEG lateralization in autism may be regionally/functionally specific. SIGNIFICANCE The data provide evidence for abnormal functional brain lateralization in autism.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension

Yury Shtyrov; Anna V. Butorina; Anastasia Nikolaeva; Tatiana A. Stroganova

Significance The mechanisms through which our brain generates complex cognitive percepts from simple sensory and motor events remain unknown. An important question is whether the basic brain structures controlling movements and perceptions directly participate in higher-order cognitive processes such as language comprehension. Using neurophysiology, we found ultrarapid (starting at ∼80 ms) activations in the human motor cortex in response to unattended action-related verbs and nouns, with words related to different body parts activating corresponding body representations. Accompanying this category-specific activity was activation suppression by words with area-incompatible meaning, demonstrating operation of the neurophysiological principles of lateral/surround inhibition in language processing. These instant activations and deactivations emerging for words of different types in the absence of attention advocate automatic involvement of neural sensorimotor circuits in language comprehension. To address the hotly debated question of motor system involvement in language comprehension, we recorded neuromagnetic responses elicited in the human brain by unattended action-related spoken verbs and nouns and scrutinized their timecourse and neuroanatomical substrates. We found that already very early on, from ∼80 ms after disambiguation point when the words could be identified from the available acoustic information, both verbs and nouns produced characteristic somatotopic activations in the motor strip, with words related to different body parts activating the corresponding body representations. Strikingly, along with this category-specific activation, we observed suppression of motor-cortex activation by competitor words with incompatible semantics, documenting operation of the neurophysiological principles of lateral/surround inhibition in neural word processing. The extremely early onset of these activations and deactivations, their emergence in the absence of attention, and their similar presence for words of different lexical classes strongly suggest automatic involvement of motor-specific circuits in the perception of action-related language.


Cortex | 2012

High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders

Tatiana A. Stroganova; Elena V. Orekhova; Andrey O. Prokofyev; Marina M. Tsetlin; Vitaliy V. Gratchev; Alexey A. Morozov; Yuriy V. Obukhov

Illusory contour (IC) perception, a fruitful model for studying the automatic contextual integration of local image features, can be used to investigate the putative impairment of such integration in children with autism spectrum disorders (ASD). We used the illusory Kanizsa square to test how the phase-locked (PL) gamma and beta electroencephalogram (EEG) responses of typically developing (TD) children aged 3-7 years and those with ASD were modulated by the presence of IC in the image. The PL beta and gamma activity strongly differentiated between IC and control figures in both groups of children (IC effect). However, the timing, topography, and direction of the IC effect differed in TD and ASD children. Between 40 msec and 120 msec after stimulus onset, both groups demonstrated lower power of gamma oscillations at occipital areas in response to IC than in response to the control figure. In TD children, this relative gamma suppression was followed by relatively higher parieto-occipital gamma and beta responses to IC within 120-270 msec after stimulus onset. This second stage of IC processing was absent in children with ASD. Instead, their response to IC was characterized by protracted (40-270 msec) relative reduction of gamma and beta oscillations at occipital areas. We hypothesize that children with ASD rely more heavily on lower-order processing in the primary visual areas and have atypical later stage related to higher-order processes of contour integration.


Frontiers in Human Neuroscience | 2014

Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials.

Elena V. Orekhova; Tatiana A. Stroganova

The extended phenotype of autism spectrum disorders (ASD) includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs) and magnetic fields (ERFs) may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response—automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN), and evaluation of stimulus novelty, indexed by P3a component,—found in individuals with ASD either increased, decreased, or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, “sensory gating” studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants “at risk” who can potentially benefit from particular types of therapies or interventions.


Clinical Neurophysiology | 2009

The right hemisphere fails to respond to temporal novelty in autism: Evidence from an ERP study

Elena V. Orekhova; Tatiana A. Stroganova; A.O. Prokofiev; Gudrun Nygren; Christopher Gillberg; Mikael Elam

OBJECTIVE This study aimed to investigate electrophysiological correlates of initial attention orienting to temporally novel sound in children with autism (CWA). METHODS Twenty-one CWA (4-8 years) and 21 age-matched typically developing children (TDC) were presented with pairs of clicks separated by a 0.5s intra-pair interval, with longer (7-9s) intervals between pairs. Children watched a silent movie during click presentation. We assessed EEG perturbations and event-related potentials (ERP) in response to sounds of different temporal novelty - first (S1) and second (S2) clicks in the pair. RESULTS In TDC, the early attention-modulated midtemporal N1c wave evoked by S1 and corresponding EEG phase locking and power increase were right-lateralized and were bilaterally higher than those evoked by S2. CWA demonstrated abnormal S1 responses, characterized by reduced N1c amplitude and EEG phase locking in the right midtemporal region, reversed leftward lateralization of the phase locking, and diminished later frontal N2 wave. Their brain responses to S2 were essentially normal. CONCLUSIONS The impaired right hemispheric processing of temporary and contextually novel information and suboptimal lateralization of normally right-lateralized attention networks may be important features of autistic disorder. SIGNIFICANCE Results of this study contribute to the understanding of autism neurobiology.


PLOS ONE | 2012

Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD).

Elena V. Orekhova; Marina M. Tsetlin; Anna V. Butorina; Svetlana I. Novikova; Vitaliy V. Gratchev; Pavel A. Sokolov; Mikael Elam; Tatiana A. Stroganova

Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH). The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.


PLOS ONE | 2013

Abnormal Pre-Attentive Arousal in Young Children with Autism Spectrum Disorder Contributes to Their Atypical Auditory Behavior: An ERP Study

Tatiana A. Stroganova; Vladimir V. Kozunov; Irina N. Posikera; Ilia A. Galuta; Vitaliy V. Gratchev; Elena V. Orekhova

Auditory sensory modulation difficulties and problems with automatic re-orienting to sound are well documented in autism spectrum disorders (ASD). Abnormal preattentive arousal processes may contribute to these deficits. In this study, we investigated components of the cortical auditory evoked potential (CAEP) reflecting preattentive arousal in children with ASD and typically developing (TD) children aged 3-8 years. Pairs of clicks (‘S1’ and ‘S2’) separated by a 1 sec S1-S2 interstimulus interval (ISI) and much longer (8-10 sec) S1-S1 ISIs were presented monaurally to either the left or right ear. In TD children, the P50, P100 and N1c CAEP components were strongly influenced by temporal novelty of clicks and were much greater in response to the S1 than the S2 click. Irrespective of the stimulation side, the ‘tangential’ P100 component was rightward lateralized in TD children, whereas the ‘radial’ N1c component had higher amplitude contralaterally to the stimulated ear. Compared to the TD children, children with ASD demonstrated 1) reduced amplitude of the P100 component under the condition of temporal novelty (S1) and 2) an attenuated P100 repetition suppression effect. The abnormalities were lateralized and depended on the presentation side. They were evident in the case of the left but not the right ear stimulation. The P100 abnormalities in ASD correlated with the degree of developmental delay and with the severity of auditory sensory modulation difficulties observed in early life. The results suggest that some rightward-lateralized brain networks that are crucially important for arousal and attention re-orienting are compromised in children with ASD and that this deficit contributes to sensory modulation difficulties and possibly even other behavioral deficits in ASD.


Neuroreport | 2007

Inverted event-related potentials response to illusory contour in boys with autism

Tatiana A. Stroganova; Elena V. Orekhova; Andrey O. Prokofyev; Irina N. Posikera; Alexey A. Morozov; Yuriy V. Obukhov; Vladimir A. Morozov

We examined the hypothesis of lower-level processing abnormalities related to perceptual grouping in boys with autism aged 3–6 years. We investigated event-related potentials response to visual elements that either formed perceptually coherent illusory contour or were arranged in a noncoherent way. The results showed that in healthy boys the illusory contour as compared with control stimulus elicited enhanced negativity of N1 peak (C effect), which has been previously found in adults. Autistic boys demonstrated the reliable inverted illusory contour effect, that is, more positive N1 amplitude to illusory contour. We hypothesized that boys with autism were sensitive to difference between illusory contour and control figures basing on collinearity processing mechanisms implemented in neural circuitry of primary visual cortex.

Collaboration


Dive into the Tatiana A. Stroganova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael Elam

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gudrun Nygren

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge