Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana Almeida Pádua is active.

Publication


Featured researches published by Tatiana Almeida Pádua.


PLOS ONE | 2013

Angiotensin II Is a New Component Involved in Splenic T Lymphocyte Responses during Plasmodium berghei ANKA Infection

João Luiz Silva-Filho; Mariana C. Souza; Claudio Teixeira Ferreira-DaSilva; Leandro S. Silva; Maria Fernanda de Souza Costa; Tatiana Almeida Pádua; Maria das Graças Henriques; Alexandre Morrot; Wilson Savino; Celso Caruso-Neves; Ana Acacia S. Pinheiro

The contribution of T cells in severe malaria pathogenesis has been described. Here, we provide evidence for the potential role of angiotensin II (Ang II) in modulating splenic T cell responses in a rodent model of cerebral malaria. T cell activation induced by infection, determined by 3 to 4-fold enhancement in CD69 expression, was reduced to control levels when mice were treated with 20 mg/kg losartan (IC50 = 0.966 mg/kg/d), an AT1 receptor antagonist, or captopril (IC50 = 1.940 mg/kg/d), an inhibitor of angiotensin-converting enzyme (ACE). Moreover, the production of interferon-γ and interleukin-17 by CD4+ T cells diminished 67% and 70%, respectively, by both treatments. Losartan reduced perforin expression in CD8+ T cells by 33% while captopril completely blocked it. The upregulation in chemokine receptor expression (CCR2 and CCR5) observed during infection was abolished and CD11a expression was partially reduced when mice were treated with drugs. T cells activated by Plasmodium berghei ANKA antigens showed 6-fold enhance in AT1 levels in comparison with naive cells. The upregulation of AT1 expression was reduced by losartan (80%) but not by captopril. Our results suggest that the AT1/Ang II axis has a role in the establishment of an efficient T cell response in the spleen and therefore could participate in a misbalanced parasite-induced T cell immune response during P. berghei ANKA infection.


International Immunopharmacology | 2015

Lipoxin A4 attenuates endothelial dysfunction during experimental cerebral malaria

Mariana C. Souza; Tatiana Almeida Pádua; Natália D. Torres; Maria Fernanda de Souza Costa; André Luis Peixoto Candéa; Thadeu Maramaldo; Leonardo Noboru Seito; Carmen Penido; Vanessa Estato; Barbara Antunes; Leandro L. da Silva; Ana Acacia S. Pinheiro; Celso Caruso-Neves; Eduardo Tibiriçá; Leonardo J. M. Carvalho; Maria das Graças Henriques

A breakdown of the brain-blood barrier (BBB) due to endothelial dysfunction is a primary feature of cerebral malaria (CM). Lipoxins (LX) are specialized pro-resolving mediators that attenuate endothelial dysfunction in different vascular beds. It has already been shown that LXA4 prolonged Plasmodium berghei-infected mice survival by a mechanism that depends on inhibiting IL-12 production and CD8(+)IFN-γ(+) T cells in brain tissue; however, the effects of this treatment on endothelial dysfunction induced during experimental cerebral malaria (ECM) remains to be elucidated. Herein, we investigate the role of LXA4 on endothelial dysfunction during ECM. The treatment of P. berghei-infected mice with LXA4 prevented BBB breakdown and ameliorated behavioral symptoms but did not modulate TNF-α production. In addition, microcirculation analysis showed that treatment with LXA4 significantly increased functional capillary density in brains of P. berghei-infected C57BL/6 mice. Furthermore, histological analyses of brain sections demonstrated that exogenous LXA4 reduced capillary congestion that was accompanied by reduced ICAM-1 expression in the brain tissue. In agreement, LXA4 treatment of endothelial cells stimulated by Plasmodium berghei (Pb)- or Plasmodium falciparum (Pf)-parasitized red blood cells (RBCs) inhibited ICAM-1 expression. Additionally, LXA4 treatment restored the expression of HO-1 that is reduced during ECM. As well, LXA4 treatment inhibits PbRBC and PfRBC adhesion to endothelial cells that was reversed by the use of an HO-1 inhibitor (ZnPPIX). Our results demonstrate for the first time that LXA4 ameliorates endothelial dysfunction during ECM by modulating ICAM-1 and HO-1 expression in brain tissue.


Respiratory Physiology & Neurobiology | 2013

Early and late acute lung injury and their association with distal organ damage in murine malaria.

Mariana C. Souza; Johnatas D. Silva; Tatiana Almeida Pádua; Vera Luiza Capelozzi; Patricia R.M. Rocco; Maria das Graças Henriques

Severe malaria is characterised by cerebral oedema, acute lung injury (ALI) and multiple organ dysfunctions, however, the mechanisms of lung and distal organ damage need to be better clarified. Ninety-six C57BL/6 mice were injected intraperitoneally with 5×10(6)Plasmodium berghei ANKA-infected erythrocytes or saline. At day 1, Plasmodium berghei infected mice presented greater number of areas with alveolar collapse, neutrophil infiltration and interstitial oedema associated with lung mechanics impairment, which was more severe at day 1 than day 5. Lung tumour necrosis factor-α and chemokine (C-X-C motif) ligand 1 levels were higher at day 5 compared to day 1. Lung damage occurred in parallel with distal organ injury at day 1; nevertheless, lung inflammation and the presence of malarial pigment in distal organs were more evident at day 5. In conclusion, ALI develops prior to the onset of cerebral malaria symptoms. Later during the course of infection, the established systemic inflammatory response increases distal organ damage.


Journal of Natural Products | 2016

Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages

Luana Barbosa Correa; Tatiana Almeida Pádua; Leonardo Noboru Seito; Thadeu Estevam Moreira Maramaldo Costa; Magaiver Andrade Silva; André Luis Peixoto Candéa; Elaine Cruz Rosas; Maria das Graças Henriques

Methyl gallate (MG) is a prevalent phenolic acid in the plant kingdom, and its presence in herbal medicines might be related to its remarkable biological effects, such as its antioxidant, antitumor, and antimicrobial activities. Although some indirect evidence suggests anti-inflammatory activity for MG, there are no studies demonstrating this effect in animal models. Herein, we demonstrated that MG (0.7-70 mg/kg) inhibited zymosan-induced experimental arthritis in a dose-dependent manner. The oral administration of MG (7 mg/kg) attenuates arthritis induced by zymosan, affecting edema formation, leukocyte migration, and the production of inflammatory mediators (IL-1β, IL-6, TNF-α, CXCL-1, LTB4, and PGE2). Pretreatment with MG inhibited in vitro neutrophil chemotaxis elicited by CXCL-1, as well as the adhesion of these cells to TNF-α-primed endothelial cells. MG also impaired zymosan-stimulated macrophages by inhibiting IL-6 and NO production, COX-2 and iNOS expression, and intracellular calcium mobilization. Thus, MG is likely to present an anti-inflammatory effect by targeting multiple cellular events such as the production of various inflammatory mediators, as well as leukocyte activation and migration.


Mediators of Inflammation | 2015

Endothelial-Leukocyte Interaction in Severe Malaria: Beyond the Brain.

Mariana C. Souza; Tatiana Almeida Pádua; Maria das Graças Henriques

Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria. Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the leukocytes and the endothelium.


Journal of Ethnopharmacology | 2015

Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis.

Elaine Cruz Rosas; Luana Barbosa Correa; Tatiana Almeida Pádua; Thadeu Estevam Moreira Maramaldo Costa; José Luiz Mazzei; Alan Patrick Heringer; Carlos Alberto Bizarro; Maria Auxiliadora Coelho Kaplan; Maria Raquel Figueiredo; Maria das Graças Henriques

ETHNOPHARMACOLOGICAL RELEVANCE Schinus terebinthifolius is a species of plant from the Anacardiaceae family, which can be found in different regions of Brazil. Schinus is popularly known as aroeirinha, aroeira-vermelha, or Brazilian pepper. In folk medicine, S. terebinthifolius is used for several disorders, including inflammatory conditions, skin wounds, mucosal membrane ulcers, respiratory problems, gout, tumors, diarrhea and arthritis. According to chemical analyses, gallic acid, methyl gallate and pentagalloylglucose are the main components of hydroalcoholic extracts from S. terebinthifolius leaves. In the present study, we demonstrated the ability of a hydroalcoholic extract to inhibit cell migration in arthritis and investigated the mechanisms underlying this phenomenon. MATERIALS AND METHODS The anti-inflammatory effect of S. terebinthifolius hydroalcoholic leaf extract (ST-70) was investigated in a zymosan-induced experimental model of inflammation. Male Swiss and C57Bl/6 mice received zymosan (100 µg/cavity) via intra-thoracic (i.t.) or intra-articular (i.a.) injection after oral pre-treatment with ST-70. The direct action of ST-70 on neutrophils was evaluated via chemotaxis. RESULTS ST-70 exhibited a dose-dependent effect in the pleurisy model. The median effective dose (ED50) was 100mg/kg, which inhibited 70% of neutrophil accumulation when compared with the control group. ST-70 reduced joint diameter and neutrophil influx for synovial tissues at 6h and 24h in zymosan-induced arthritis. Additionally, ST-70 inhibited synovial interleukin (IL)-6, IL-1β, keratinocyte-derived chemokine (CXCL1/KC) and Tumor Necrosis Factor (TNF)-α production at 6h and CXCL1/KC and IL-1β production at 24h. The direct activity of ST-70 on neutrophils was observed via the impairment of CXCL1/KC-induced chemotaxis in neutrophils. Oral administration of ST-70 did not induce gastric damage. Daily administration for twenty days did not kill any animals. In contrast, similar administrations of diclofenac induced gastric damage and killed all animals by the fifth day. CONCLUSIONS Our results demonstrated significant anti-inflammatory effects of ST-70, suggesting a putative use of this herb for the development of phytomedicines to treat inflammatory diseases, such as joint inflammation.


Stem Cell Research & Therapy | 2015

Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria

Mariana C. Souza; Johnatas D. Silva; Tatiana Almeida Pádua; Natália D. Torres; Mariana A. Antunes; Debora G. Xisto; Thiago P. Abreu; Vera Luiza Capelozzi; Marcelo M. Morales; Ana Acacia S. Pinheiro; Celso Caruso-Neves; Maria das Graças Henriques; Patricia R.M. Rocco

IntroductionMalaria is the most relevant parasitic disease worldwide, and still accounts for 1 million deaths each year. Since current antimalarial drugs are unable to prevent death in severe cases, new therapeutic strategies have been developed. Mesenchymal stromal cells (MSC) confer host resistance against malaria; however, thus far, no study has evaluated the therapeutic effects of MSC therapy on brain and distal organ damage in experimental cerebral malaria.MethodsForty C57BL/6 mice were injected intraperitoneally with 5 × 106Plasmodium berghei-infected erythrocytes or saline. After 24 h, mice received saline or bone marrow (BM)-derived MSC (1x105) intravenously and were housed individually in metabolic cages. After 4 days, lung and kidney morphofunction; cerebrum, spleen, and liver histology; and markers associated with inflammation, fibrogenesis, and epithelial and endothelial cell damage in lung tissue were analyzed.ResultsIn P. berghei-infected mice, BM-MSCs: 1) reduced parasitemia and mortality; 2) increased phagocytic neutrophil content in brain, even though BM-MSCs did not affect the inflammatory process; 3) decreased malaria pigment detection in spleen, liver, and kidney; 4) reduced hepatocyte derangement, with an increased number of Kupffer cells; 5) decreased kidney damage, without effecting significant changes in serum creatinine levels or urinary flow; and 6) reduced neutrophil infiltration, interstitial edema, number of myofibroblasts within interstitial tissue, and collagen deposition in lungs, resulting in decreased lung static elastance. These morphological and functional changes were not associated with changes in levels of tumor necrosis factor-α, keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8), or interferon-γ, which remained increased and similar to those of P. berghei animals treated with saline. BM-MSCs increased hepatocyte growth factor but decreased VEGF in the P. berghei group.ConclusionsBM-MSC treatment increased survival and reduced parasitemia and malaria pigment accumulation in spleen, liver, kidney, and lung, but not in brain. The two main organs associated with worse prognosis in malaria, lung and kidney, sustained less histological damage after BM-MSC therapy, with a more pronounced improvement in lung function.


Current Drug Delivery | 2017

In Vitro and In Vivo Evaluation of DMSO and Azone as Penetration Enhancers for Cutaneous Application of Celecoxib

Thassia D`Arc Senna; Hilton Antônio Mata dos Santos; Daniel Mabundu Kibwila; Alvaro C. Leitão; Alexandre dos Santos Pyrrho; Marcelo de Pádula; Elaine Cruz Rosas; Tatiana Almeida Pádua; Marilisa Guimarães Lara; Maria Bernadete Riemma Pierre

BACKGROUND Celecoxib (CXB) has been explored as an anti-inflammatory or chemopreventive drug for topical treatment of skin diseases and cancer. OBJECTIVE The main aim of this work was to investigate the potential of dimethylsufoxide (DMSO) and Azone (AZ) as penetration enhancers (P.Es) for topical delivery of CXB. METHOD The in vitro studies, drug release, skin permeability and potential cytotoxicity/genotoxicity were carried out with formulations containing or not DMSO or AZ (5% and 10%). Skin irritation in rabbits and topical anti-inflammatory activity in mice were assayed in vivo. RESULTS Skin permeation was minimal while higher retention in stratum corneum (SC) and epidermis plus dermis was found (28.0 and 3-fold respectively) from 10.0% AZ compared to the control indicating a localized CXB effect. CXB associated to 5% or 10% DMSO has shown high drug permeation through skin with low retention. Associations of CXB with both enhancers were not cytotoxic or genotoxic, suggesting safety for cutaneous application. In vivo skin irritation assays of all formulations indicated mild irritation effects and, thus, possible use for longer periods. In vivo anti-inflammatory tests showed that ear edema could be inhibited by CXB associated with 5.0% DMSO (53.0%) or 10.0% AZ (40.0%). These inhibition values were almost 2-fold higher when compared to a commercial formula. CONCLUSION Although DMSO- associated CXB is an efficient edema inhibitor its high skin permeation suggests risks of systemic effects, whereas association to 10% AZ may improve topical delivery of the drug with good anti-inflammatory activity and no cytotoxic/genotoxic or significant skin irritation effects.


Journal of Pharmacy and Pharmacology | 2018

Copaiba oil enhances in vitro/in vivo cutaneous permeability and in vivo anti-inflammatory effect of celecoxib

Oliesia Gonzalez Quiñones; Bryan Hudson Hossy; Tatiana Almeida Pádua; Nádia Campos de Oliveira Miguel; Elaine Cruz Rosas; Mônica Freiman de Souza Ramos; Maria Bernadete Riemma Pierre

The aim of this article was to use copaiba oil (C.O) to improve skin permeability and topical anti‐inflammatory activity of celecoxib (Cxb).


Archive | 2016

Multiple Organ Dysfunction During Severe Malaria: The Role of the Inflammatory Response

Mariana C. Souza; Tatiana Almeida Pádua; Maria das Graças Henriques

Severe malaria is a systemic illness characterized by the dysfunction of one or more peripheral organs, such as the lungs [acute respiratory distress syndrome (ARDS)] and kidneys [acute kidney injury (AKI)]. Several clinical and experimental studies suggest that features of the inflammatory response are related to the multi-organ dysfunction observed in severe malaria. Our group has been dedicated to studying the roles of proand anti-inflammatory mediators in the multi-organ dysfunction observed in experimental severe malaria, especially in the lungs, kidneys, and brain. Herein, we explore severe malaria as a pathology derived from intense inflammatory responses in different organs and further distinguish and compare these organ-specific inflammatory responses. The pathophysiological mechanism of severe malaria is not fully elucidated; however, it is important to study it as a complex inflammatory response assembled by different actors, each one orchestrating a different mechanism.

Collaboration


Dive into the Tatiana Almeida Pádua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Acacia S. Pinheiro

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Celso Caruso-Neves

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johnatas D. Silva

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge