Tatiana Domitrovic
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana Domitrovic.
FEBS Letters | 2004
Patricia Machado Bueno Fernandes; Tatiana Domitrovic; Camilla M. Kao; Eleonora Kurtenbach
Gene expression patterns in response to hydrostatic pressure were determined by whole genome microarray hybridization. Functional classification of the 274 genes affected by pressure treatment of 200 MPa for 30 min revealed a stress response expression profile. The majority of the >2‐fold upregulated genes were involved in stress defense and carbohydrate metabolism while most of the repressed ones were in cell cycle progression and protein synthesis categories. Furthermore, uncharacterized genes were among the 10 highest expressed sequences and represented 45% of the total upregulated genes. The results of this study revealed a hydrostatic pressure‐specific stress response pattern and suggested interesting information about the mechanisms involved in adaptation of cells to a high‐pressure environment.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Andrew Routh; Tatiana Domitrovic; John E. Johnson
Next-generation sequencing is a valuable tool in our growing understanding of the genetic diversity of viral populations. Using this technology, we have investigated the RNA content of a purified nonenveloped single-stranded RNA virus, flock house virus (FHV). We have also investigated the RNA content of virus-like particles (VLPs) of FHV and the related Nudaurelia capensis omega virus. VLPs predominantly package ribosomal RNA and transcripts of their baculoviral expression vectors. In addition, we find that 5.3% of the packaged RNAs are transposable elements derived from the Sf21 genome. This observation may be important when considering the therapeutic use of VLPs. We find that authentic FHV virions also package a variety of host RNAs, accounting for 1% of the packaged nucleic acid. Significant quantities of host messenger RNAs, ribosomal RNA, noncoding RNAs, and transposable elements are readily detected. The packaging of these host RNAs elicits the possibility of horizontal gene transfer between eukaryotic hosts that share a viral pathogen. We conclude that the genetic content of nonenveloped RNA viruses is variable, not just by genome mutation, but also in the diversity of RNA transcripts that are packaged.
Journal of Structural Biology | 2013
Qiu Wang; Tsutomu Matsui; Tatiana Domitrovic; Yili Zheng; Peter C. Doerschuk; John E. Johnson
CryoEM data capture the dynamic character associated with biological macromolecular assemblies by preserving the various conformations of the individual specimens at the moment of flash freezing. Regions of high variation in the data set are apparent in the image reconstruction due to the poor density that results from the lack of superposition of these regions. These observations are qualitative and, to date, only preliminary efforts have been made to quantitate the heterogeneity in the ensemble of particles that are individually imaged. We developed and tested a quantitative method for simultaneously computing a reconstruction of the particle and a map of the space-varying heterogeneity of the particle based on an entire data set. The method uses a maximum likelihood algorithm that explicitly takes into account the continuous variability from one instance to another instance of the particle. The result describes the heterogeneity of the particle as a variance to be plotted at every voxel of the reconstructed density. The test, employing time resolved data sets of virus maturation, not only recapitulated local variations obtained with difference map analysis, but revealed a remarkable time dependent reduction in the overall particle dynamics that was unobservable with classical methods of analysis.
Fems Yeast Research | 2003
Tatiana Domitrovic; Fernando L. Palhano; Christina Barja-Fidalgo; Martha DeFreitas; M.T.D. Orlando; Patricia Machado Bueno Fernandes
Nitric oxide (NO) is a simple and unique molecule that has diverse functions in organisms, including intracellular and intercellular messenger. The influence of NO on cell growth of Saccharomyces cerevisiae and as a signal molecule in stress response was evaluated. Respiring cells were more sensitive to an increase in intracellular NO concentration than fermentatively growing cells. Low levels of NO demonstrated a cytoprotective effect during stress from heat-shock or high hydrostatic pressure. Induction of NO synthase was isoform-specific and dependent on the metabolic state of the cells and the stress response pathway. These results support the hypothesis that an increase in intracellular NO concentration leads to stress protection.
FEBS Letters | 2006
Tatiana Domitrovic; Caroline Mota Fernandes; Emmanuelle Boy-Marcotte; Eleonora Kurtenbach
Msn2 and Msn4 transcription factors activate expression of stress‐responsive element (STRE) controlled genes in response to various stresses triggering the environmental stress response in Saccharomyces cerevisiae. Although high hydrostatic pressure is known to induce gene expression modification in yeast, the transcription factors involved in this response are currently uncharacterized. In this work, we show that elevated pressure activates STRE dependent transcription through Msn2/4, which are also required for cell resistance and cell adaptation to high pressure. Moreover, it was demonstrated that HSP12 induction after a 50 MPa treatment is largely dependent on Msn2/4, while other transcription factors are involved in HSP12 over‐expression after a 100 MPa treatment.
Journal of Molecular Biology | 2013
Tatiana Domitrovic; Navid Movahed; Brian Bothner; Tsutomu Matsui; Qiu Wang; Peter C. Doerschuk; John E. Johnson
We generalize the concept of allostery from the traditional non-active-site control of enzymes to virus maturation. Virtually, all animal viruses transition from a procapsid noninfectious state to a mature infectious state. The procapsid contains an encoded chemical program that is executed following an environmental cue. We developed an exceptionally accessible virus system for the study of the activators of maturation and the downstream consequences that result in particle stability and infectivity. Nudaurelia capensis omega virus (NωV) is a T=4 icosahedral virus that undergoes a dramatic maturation in which the 490-Å spherical procapsid condenses to a 400-Å icosahedral-shaped capsid with associated specific auto-proteolysis and stabilization. Employing X-ray crystallography, time-resolved electron cryo-microscopy and hydrogen/deuterium exchange as well as biochemistry, it was possible to define the mechanisms of allosteric communication among the four quasi-equivalent subunits in the icosahedral asymmetric unit. These gene products undergo proteolysis at different rates, dependent on quaternary structure environment, while particle stability is conferred globally following only a few local subunit transitions. We show that there is a close similarity between the concepts of tensegrity (associated with geodesic domes and mechanical engineering) and allostery (associated with biochemical control mechanisms).
Journal of Virology | 2012
Tatiana Domitrovic; Tsutomu Matsui; John E. Johnson
ABSTRACT Nonenveloped viruses often invade membranes by exposing hydrophobic or amphipathic peptides generated by a proteolytic maturation step that leaves a lytic peptide noncovalently associated with the viral capsid. Since multiple copies of the same protein form many nonenveloped virus capsids, it is unclear if lytic peptides derived from subunits occupying different positions in a quasi-equivalent icosahedral capsid play different roles in host infection. We addressed this question with Nudaurelia capensis omega virus (NωV), an insect RNA virus with an icosahedral capsid formed by protein α, which undergoes autocleavage during maturation, producing the lytic γ peptide. NωV is a unique model because autocatalysis can be precisely initiated in vitro and is sufficiently slow to correlate lytic activity with γ peptide production. Using liposome-based assays, we observed that autocatalysis is essential for the potent membrane disruption caused by NωV. We observed that lytic activity is acquired rapidly during the maturation program, reaching 100% activity with less than 50% of the subunits cleaved. Previous time-resolved structural studies of partially mature NωV particles showed that, during this time frame, γ peptides derived from the pentamer subunits are produced and are organized in a vertical helical bundle that is projected toward the particle surface, while identical polypeptides in quasi-equivalent subunits are produced later or are in positions inappropriate for release. Our functional data provide experimental support for the hypothesis that pentamers containing a central helical bundle, observed in different nonenveloped virus families, are a specialized lytic motif.
Biopolymers | 2014
Luciano Neves de Medeiros; Tatiana Domitrovic; Paula Cavalcante de Andrade; Jane Faria; Eliana Barreto Bergter; Gilberto Weissmüller; Eleonora Kurtenbach
Psd1 is a plant defensin that has antifungal activity against several pathogenic and nonpathogenic fungi. Previous analysis of Psd1 chemical shift perturbations by nuclear magnetic resonance (NMR) spectroscopy demonstrated that this defensin interacts with phospholipids and the sphingolipid glucosylceramide isolated from Fusarium solani (GlcCerFusarium solani). In this study, these interactions were evaluated by real‐time surface plasmon resonance (SPR) analysis. The data obtained demonstrated that Psd1 could bind more strongly to small unilamellar vesicles (SUV)‐containing GlcCerFusarium solani than to SUV that was composed of phosphatidylcholine (PC) alone or was enriched with GlcCer that had been isolated from soybeans. An increase in the SPR response after cholesterol or ergosterol incorporation in PC‐SUV was detected; however, SUV composed of PC:Erg (7:3; molar:molar) became unstable in the presence of Psd1, suggesting membrane destabilization. We also observed a lack of Psd1 internalization in Candida albicans strains that were deficient in the glucosyl ceramide synthase gene. Together, these data indicate that GlcCer is essential for Psd1 anchoring in the fungal plasma membrane as well as internalization.
RNA Biology | 2016
Rodrigo D. Requião; Henrique José Araujo de Souza; Silvana Rossetto; Tatiana Domitrovic; Fernando L. Palhano
ABSTRACT It has been proposed that polybasic peptides cause slower movement of ribosomes through an electrostatic interaction with the highly negative ribosome exit tunnel. Ribosome profiling data—the sequencing of short ribosome-bound fragments of mRNA—is a powerful tool for the analysis of mRNA translation. Using the yeast Saccharomyces cerevisiae as a model, we showed that reduced translation efficiency associated with polybasic protein sequences could be inferred from ribosome profiling. However, an increase in ribosome density at polybasic sequences was evident only when the commonly used translational inhibitors cycloheximide and anisomycin were omitted during mRNA isolation. Since ribosome profiling performed without inhibitors agrees with experimental evidence obtained by other methods, we conclude that cycloheximide and anisomycin must be avoided in ribosome profiling experiments.
PLOS ONE | 2010
Tatiana Domitrovic; Guennadi Kozlov; João G. Freire; Claudio A. Masuda; Marcius S. Almeida; Mónica Montero-Lomelí; Georgia C. Atella; Edna Matta-Camacho; Kalle Gehring; Eleonora Kurtenbach
The genome of Saccharomyces cerevisiae is arguably the best studied eukaryotic genome, and yet, it contains approximately 1000 genes that are still relatively uncharacterized. As the majority of these ORFs have no homologs with characterized sequence or protein structure, traditional sequence-based approaches cannot be applied to deduce their biological function. Here, we characterize YER067W, a conserved gene of unknown function that is strongly induced in response to many stress conditions and repressed in drug resistant yeast strains. Gene expression patterns of YER067W and its paralog YIL057C suggest an involvement in energy metabolism. We show that yeast lacking YER067W display altered levels of reserve carbohydrates and a growth deficiency in media that requires aerobic metabolism. Impaired mitochondrial function and overall reduction of ergosterol content in the YER067W deleted strain explained the observed 2- and 4-fold increase in resistance to the drugs fluconazole and amphotericin B, respectively. Cell fractionation and immunofluorescence microscopy revealed that Yer067w is associated with cellular membranes despite the absence of a transmembrane domain in the protein. Finally, the 1.7 Å resolution crystal structure of Yer067w shows an alpha-beta fold with low similarity to known structures and a putative functional site. YER067Ws involvement with aerobic energetic metabolism suggests the assignment of the gene name RGI1, standing for respiratory growth induced 1. Altogether, the results shed light on a previously uncharacterized protein family and provide basis for further studies of its apparent role in energy metabolism control and drug resistance.
Collaboration
Dive into the Tatiana Domitrovic's collaboration.
Patricia Machado Bueno Fernandes
Universidade Federal do Espírito Santo
View shared research outputs