Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana G. Kutateladze is active.

Publication


Featured researches published by Tatiana G. Kutateladze.


Nature | 2006

ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression

Xiaobing Shi; Tao Hong; Kay L. Walter; Mark Ewalt; Eriko Michishita; Tiffany Hung; Dylan Carney; Pedro V. Peña; Fei Lan; Mohan R. Kaadige; Nicolas Lacoste; Christelle Cayrou; Foteini Davrazou; Anjanabha Saha; Bradley R. Cairns; Donald E. Ayer; Tatiana G. Kutateladze; Yang Shi; Jacques Côté; Katrin F. Chua; Or Gozani

Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains—the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a–HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a–HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.


Clinical Cancer Research | 2012

Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer.

Robert C. Doebele; Amanda B. Pilling; Dara L. Aisner; Tatiana G. Kutateladze; Anh T. Le; Andrew J. Weickhardt; Kimi L. Kondo; Derek J. Linderman; Lynn E. Heasley; Wilbur A. Franklin; Marileila Varella-Garcia; D. Ross Camidge

Purpose: Patients with anaplastic lymphoma kinase (ALK) gene rearrangements often manifest dramatic responses to crizotinib, a small-molecule ALK inhibitor. Unfortunately, not every patient responds and acquired drug resistance inevitably develops in those who do respond. This study aimed to define molecular mechanisms of resistance to crizotinib in patients with ALK+ non–small cell lung cancer (NSCLC). Experimental Design: We analyzed tissue obtained from 14 patients with ALK+ NSCLC showing evidence of radiologic progression while on crizotinib to define mechanisms of intrinsic and acquired resistance to crizotinib. Results: Eleven patients had material evaluable for molecular analysis. Four patients (36%) developed secondary mutations in the tyrosine kinase domain of ALK. A novel mutation in the ALK domain, encoding a G1269A amino acid substitution that confers resistance to crizotinib in vitro, was identified in two of these cases. Two patients, one with a resistance mutation, exhibited new onset ALK copy number gain (CNG). One patient showed outgrowth of epidermal growth factor receptor (EGFR) mutant NSCLC without evidence of a persistent ALK gene rearrangement. Two patients exhibited a KRAS mutation, one of which occurred without evidence of a persisting ALK gene rearrangement. One patient showed the emergence of an ALK gene fusion–negative tumor compared with the baseline sample but with no identifiable alternate driver. Two patients retained ALK positivity with no identifiable resistance mechanism. Conclusions: Crizotinib resistance in ALK+ NSCLC occurs through somatic kinase domain mutations, ALK gene fusion CNG, and emergence of separate oncogenic drivers. Clin Cancer Res; 18(5); 1472–82. ©2012 AACR.


Nature | 2006

Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2.

Pedro V. Peña; Foteini Davrazou; Xiaobing Shi; Kay L. Walter; Vladislav V. Verkhusha; Or Gozani; Rui Zhao; Tatiana G. Kutateladze

Covalent modifications of histone tails have a key role in regulating chromatin structure and controlling transcriptional activity. In eukaryotes, histone H3 trimethylated at lysine 4 (H3K4me3) is associated with active chromatin and gene expression. We recently found that plant homeodomain (PHD) finger of tumour suppressor ING2 (inhibitor of growth 2) binds H3K4me3 and represents a new family of modules that target this epigenetic mark. The molecular mechanism of H3K4me3 recognition, however, remains unknown. Here we report a 2.0 Å resolution structure of the mouse ING2 PHD finger in complex with a histone H3 peptide trimethylated at lysine 4. The H3K4me3 tail is bound in an extended conformation in a deep and extensive binding site consisting of elements that are conserved among the ING family of proteins. The trimethylammonium group of Lys 4 is recognized by the aromatic side chains of Y215 and W238 residues, whereas the intermolecular hydrogen-bonding and complementary surface interactions, involving Ala 1, Arg 2, Thr 3 and Thr 6 of the peptide, account for the PHD fingers high specificity and affinity. Substitution of the binding site residues disrupts H3K4me3 interaction in vitro and impairs the ability of ING2 to induce apoptosis in vivo. Strong binding of other ING and YNG PHD fingers suggests that the recognition of H3K4me3 histone code is a general feature of the ING/YNG proteins. Elucidation of the mechanisms underlying this novel function of PHD fingers provides a basis for deciphering the role of the ING family of tumour suppressors in chromatin regulation and signalling.


Nature Structural & Molecular Biology | 2012

Perceiving the epigenetic landscape through histone readers

Catherine A. Musselman; Marie-Eve Lalonde; Jacques Côté; Tatiana G. Kutateladze

Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition.


Nature Cell Biology | 2001

Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes

Matthew L. Cheever; Trey K. Sato; Tonny de Beer; Tatiana G. Kutateladze; Scott D. Emr; Michael Overduin

Specific recognition of phosphoinositides is crucial for protein sorting and membrane trafficking. Protein transport to the yeast vacuole depends on the Vam7 t-SNARE and its phox homology (PX) domain. Here, we show that the PX domain of Vam7 targets to vacuoles in vivo in a manner dependent on phosphatidylinositol 3-phosphate generation. A novel phosphatidylinositol-3-phosphate-binding motif and an exposed loop that interacts with the lipid bilayer are identified by nuclear magnetic resonance spectroscopy. Conservation of key structural and binding site residues across the diverse PX family indicates a shared fold and phosphoinositide recognition function.


Cell | 2006

Structural insights into histone demethylation by JMJD2 family members

Zhongzhou Chen; Jianye Zang; Johnathan R. Whetstine; Xia Hong; Foteini Davrazou; Tatiana G. Kutateladze; Michael Simpson; Qilong Mao; Cheol-Ho Pan; Shaodong Dai; James Hagman; Kirk C. Hansen; Yang Shi; Gongyi Zhang

Posttranslational modifications of histones regulate chromatin structure and gene expression. Histone demethylases, members of a newly emerging transcription-factor family, remove methyl groups from the lysine residues of the histone tails and thereby regulate the transcriptional activity of target genes. JmjC-domain-containing proteins have been predicted to be demethylases. For example, the JmjC-containing protein JMJD2A has been characterized as a H3-K9me3- and H3-K36me3-specific demethylase. Here, structures of the catalytic-core domain of JMJD2A with and without alpha-ketoglutarate in the presence of Fe2+ have been determined by X-ray crystallography. The structure of the core domain, consisting of the JmjN domain, the JmjC domain, the C-terminal domain, and a zinc-finger motif, revealed the unique elements that form a potential substrate binding pocket. Sited-directed mutagenesis in conjunction with demethylase activity assays allowed us to propose a molecular model for substrate selection by the JMJD2 histone demethylase family.


Journal of Biological Chemistry | 2007

Proteome-wide Analysis in Saccharomyces cerevisiae Identifies Several PHD Fingers as Novel Direct and Selective Binding Modules of Histone H3 Methylated at Either Lysine 4 or Lysine 36

Xiaobing Shi; Ioulia Kachirskaia; Kay L. Walter; Jen Hao A. Kuo; Aimee Lake; Foteini Davrazou; Steve M. Chan; David G.E. Martin; Ian M. Fingerman; Scott D. Briggs; LeAnn Howe; Paul J. Utz; Tatiana G. Kutateladze; Alexey A. Lugovskoy; Mark T. Bedford; Or Gozani

The PHD finger motif is a signature chromatin-associated motif that is found throughout eukaryotic proteomes. Here we have determined the histone methyl-lysine binding activity of the PHD fingers present within the Saccharomyces cerevisiae proteome. We provide evidence on the genomic scale that PHD fingers constitute a general class of effector modules for histone H3 trimethylated at lysine 4 (H3K4me3) and histone H3 trimethylated at lysine 36 (H3K36me3). Structural modeling of PHD fingers demonstrates a conserved mechanism for recognizing the trimethyl moiety and provides insight into the molecular basis of affinity for the different methyl-histone ligands. Together, our study suggests that a common function for PHD fingers is to transduce methyl-lysine events and sheds light on how a single histone modification can be linked to multiple biological outcomes.


Nature | 2002

The DIX domain targets dishevelled to actin stress fibres and vesicular membranes

Daniel G. S. Capelluto; Tatiana G. Kutateladze; Raymond Habas; Carla V. Finkielstein; Xi He; Michael Overduin

Colorectal cancer results from mutations in components of the Wnt pathway that regulate β-catenin levels. Dishevelled (Dvl or Dsh) signals downstream of Wnt receptors and stabilizes β-catenin during cell proliferation and embryonic axis formation. Moreover, Dvl contributes to cytoskeletal reorganization during gastrulation and mitotic spindle orientation during asymmetric cell division. Dvl belongs to a family of eukaryotic signalling proteins that contain a conserved 85-residue module of unknown structure and biological function called the DIX domain. Here we show that the DIX domain mediates targeting to actin stress fibres and cytoplasmic vesicles in vivo. Neighbouring interaction sites for actin and phospholipid are identified between two helices by nuclear magnetic resonance spectroscopy (NMR). Mutation of the actin-binding motif abolishes the cytoskeletal localization of Dvl, but enhances Wnt/β-catenin signalling and axis induction in Xenopus. By contrast, mutation of the phospholipid interaction site disrupts vesicular association of Dvl, Dvl phosphorylation, and Wnt/β-catenin pathway activation. We propose that partitioning of Dvl into cytoskeletal and vesicular pools by the DIX domain represents a point of divergence in Wnt signalling.


Molecular Cell | 2009

ING4 Mediates Crosstalk between Histone H3 K4 Trimethylation and H3 Acetylation to Attenuate Cellular Transformation

Tiffany Hung; Olivier Binda; Karen S. Champagne; Alex J. Kuo; Kyle L. Johnson; Howard Y. Chang; Matthew D. Simon; Tatiana G. Kutateladze; Or Gozani

Aberrations in chromatin dynamics play a fundamental role in tumorigenesis, yet relatively little is known of the molecular mechanisms linking histone lysine methylation to neoplastic disease. ING4 (Inhibitor of Growth 4) is a native subunit of an HBO1 histone acetyltransferase (HAT) complex and a tumor suppressor protein. Here we show a critical role for specific recognition of histone H3 trimethylated at lysine 4 (H3K4me3) by the ING4 PHD finger in mediating ING4 gene expression and tumor suppressor functions. The interaction between ING4 and H3K4me3 augments HBO1 acetylation activity on H3 tails and drives H3 acetylation at ING4 target promoters. Further, ING4 facilitates apoptosis in response to genotoxic stress and inhibits anchorage-independent cell growth, and these functions depend on ING4 interactions with H3K4me3. Together, our results demonstrate a mechanism for brokering crosstalk between H3K4 methylation and H3 acetylation and reveal a molecular link between chromatin modulation and tumor suppressor mechanisms.


Molecular Cell | 1999

Phosphatidylinositol 3-Phosphate Recognition by the FYVE Domain

Tatiana G. Kutateladze; Kenyon D. Ogburn; William T. Watson; Tonny de Beer; Scott D. Emr; Christopher G. Burd; Michael Overduin

Recognition of phosphatidylinositol 3-phosphate (Ptdlns(3)P) is crucial for a broad range of cellular signaling and membrane trafficking events regulated by phosphoinositide (PI) 3-kinases. PtdIns(3)P binding by the FYVE domain of human early endosome autoantigen 1 (EEA1), a protein implicated in endosome fusion, involves two beta hairpins and an alpha helix. Specific amino acids, including those of the FYVE domains conserved RRHHCRQCGNIF motif, contact soluble and micelle-embedded lipid and provide specificity for Ptdlns(3)P over Ptdlns(5)P and Ptdlns, as shown by heteronuclear magnetic resonance spectroscopy. Although the FYVE domain relies on a zinc-binding motif reminiscent of RING fingers, it is distinguished by ovel structural features and its ptdlns(3)P-binding site.

Collaboration


Dive into the Tatiana G. Kutateladze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobing Shi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brianna J. Klein

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Forest H. Andrews

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jovylyn Gatchalian

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Foteini Davrazou

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Muzaffar Ali

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge