Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana Giraud is active.

Publication


Featured researches published by Tatiana Giraud.


PLOS Genetics | 2011

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

Joelle Amselem; Christina A. Cuomo; Jan A. L. van Kan; Muriel Viaud; Ernesto P. Benito; Arnaud Couloux; Pedro M. Coutinho; Ronald P. de Vries; Paul S. Dyer; Sabine Fillinger; Elisabeth Fournier; Lilian Gout; Matthias Hahn; Linda T. Kohn; Nicolas Lapalu; Kim M. Plummer; Jean-Marc Pradier; Emmanuel Quévillon; Amir Sharon; Adeline Simon; Arjen ten Have; Bettina Tudzynski; Paul Tudzynski; Patrick Wincker; Marion Andrew; Véronique Anthouard; Ross E. Beever; Rolland Beffa; Isabelle Benoit; Ourdia Bouzid

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Evolution of supercolonies: The Argentine ants of southern Europe

Tatiana Giraud; Jes S. Pedersen; Laurent Keller

Some ants have an extraordinary social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This type of social organization is not only a key attribute responsible for the ecological domination of these ants, but also an evolutionary paradox and a potential problem for kin selection theory because relatedness between nest mates is effectively zero. The introduction of the Argentine ant in Europe was apparently accompanied by a dramatic loss of inter-nest aggression and the formation of two immense supercolonies (which effectively are two unicolonial populations). Introduced populations experienced only limited loss of genetic diversity at neutral markers, indicating that the breakdown of recognition ability is unlikely to be merely due to a genetic bottleneck. Rather, we suggest that a “genetic cleansing” of recognition cues occurred after introduction. Indeed workers of the same supercolony are never aggressive to each other despite the large geographical distance and considerable genetic differentiation between sampling sites. By contrast, aggression is invariably extremely high between the two supercolonies, indicating that they have become fixed for different recognition alleles. The main supercolony, which ranges over 6,000 km from Italy to the Spanish Atlantic coast, effectively forms the largest cooperative unit ever recorded.


Molecular Ecology | 2005

High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction

B. J. Genton; Jacqui A. Shykoff; Tatiana Giraud

Ambrosia artemisiifolia is an aggressive North American annual weed, found particularly in sunflower and corn fields. Besides its economic impact on crop yield, it represents a major health problem because of its strongly allergenic pollen. Ragweed was imported inadvertently to Europe in the 18th century and has become invasive in several countries, notably in the Rhône Valley of France. It has recently expanded in both the Provence‐Alpes‐Côte‐d’Azur and Bourgogne regions. As first steps towards understanding the causes and mechanisms of ragweed invasion, genetic variability of French and North American populations was analysed using microsatellites. Overall genetic variability was similar in North America and in the Rhône‐Alpes region, but within‐population levels of genetic variability were surprisingly lower in native than in invasive French populations. French populations also exhibited lower among‐population differentiation. A significant pattern of isolation by distance was detected among North American populations but not among French populations. Assignment tests and distribution of rare alleles did not point to a single origin for all French populations, nor for all individuals within populations and private alleles from different North American populations were found in the same French populations. Indeed, within all French populations, individual plants were roughly equally assigned to the different North American populations. Altogether, these results suggest that the French invasive populations include plants from a mixture of sources. Reduced diversity in populations distant from the original area of introduction indicated that ragweed range expansion probably occurred through sequential bottlenecks from the original populations, and not from subsequent new introductions.


Fungal Genetics and Biology | 2008

Speciation in fungi.

Tatiana Giraud; Guislaine Refrégier; Mickaël Le Gac; Damien M. de Vienne; Michael E. Hood

In this review on fungal speciation, we first contrast the issues of species definition and species criteria and show that by distinguishing the two concepts the approaches to studying the speciation can be clarified. We then review recent developments in the understanding of modes of speciation in fungi. Allopatric speciation raises no theoretical problem and numerous fungal examples exist from nature. We explain the theoretical difficulties raised by sympatric speciation, review the most recent models, and provide some natural examples consistent with speciation in sympatry. We describe the nature of prezygotic and postzygotic reproductive isolation in fungi and examine their evolution as functions of temporal and of the geographical distributions. We then review the theory and evidence for roles of cospeciation, host shifts, hybridization, karyotypic rearrangement, and epigenetic mechanisms in fungal speciation. Finally, we review the available data on the genetics of speciation in fungi and address the issue of speciation in asexual species.


PLOS Genetics | 2012

New Insight into the History of Domesticated Apple: Secondary Contribution of the European Wild Apple to the Genome of Cultivated Varieties

Amandine Cornille; Pierre Gladieux; M.J.M. Smulders; Isabel Roldán-Ruiz; François Laurens; Bruno Le Cam; Anush Nersesyan; Joanne Clavel; Marina V. Olonova; Laurence Feugey; Ivan Gabrielyan; Xiu-Guo Zhang; Maud I. Tenaillon; Tatiana Giraud

The apple is the most common and culturally important fruit crop of temperate areas. The elucidation of its origin and domestication history is therefore of great interest. The wild Central Asian species Malus sieversii has previously been identified as the main contributor to the genome of the cultivated apple (Malus domestica), on the basis of morphological, molecular, and historical evidence. The possible contribution of other wild species present along the Silk Route running from Asia to Western Europe remains a matter of debate, particularly with respect to the contribution of the European wild apple. We used microsatellite markers and an unprecedented large sampling of five Malus species throughout Eurasia (839 accessions from China to Spain) to show that multiple species have contributed to the genetic makeup of domesticated apples. The wild European crabapple M. sylvestris, in particular, was a major secondary contributor. Bidirectional gene flow between the domesticated apple and the European crabapple resulted in the current M. domestica being genetically more closely related to this species than to its Central Asian progenitor, M. sieversii. We found no evidence of a domestication bottleneck or clonal population structure in apples, despite the use of vegetative propagation by grafting. We show that the evolution of domesticated apples occurred over a long time period and involved more than one wild species. Our results support the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication. This combination of processes may account for the diversification of several long-lived perennial crops, yielding domestication patterns different from those observed for annual species.


Trends in Ecology and Evolution | 2010

Linking the emergence of fungal plant diseases with ecological speciation

Tatiana Giraud; Pierre Gladieux; Sergey Gavrilets

Emerging diseases represent a growing worldwide problem accompanying global environmental changes. There is tremendous interest in identifying the factors controlling the appearance and spread of these diseases. Here, we discuss emerging fungal plant diseases, and argue that they often result from host shift speciation (a particular case of ecological speciation). We consider the factors controlling local adaptation and ecological speciation, and show that certain life-history traits of many fungal plant pathogens are conducive for rapid ecological speciation, thus favoring the emergence of novel pathogen species adapted to new hosts. We argue that placing the problem of emerging fungal diseases of plants within the context of ecological speciation can significantly improve our understanding of the biological mechanisms governing the emergence of such diseases.


Evolution | 2007

Phylogenetic evidence of host-specific cryptic species in the anther smut fungus.

Mickaël Le Gac; Michael E. Hood; Elisabeth Fournier; Tatiana Giraud

Abstract Cryptic structure of species complexes confounds an accurate accounting of biological diversity in natural systems. Also, cryptic sibling species often become specialized to different ecological conditions, for instance, with host specialization by cryptic parasite species. The fungus Microbotryum violaceum causes anther smut disease in plants of Caryophyllaceae, and the degree of specialization and gene flow between strains on different hosts have been controversial in the literature. We conducted molecular phylogenetic analyses on M. violaceum from 23 host species and different geographic origins using three single-copy nuclear genes (β-tub, γ-tub, and Ef1α). Congruence between the phylogenies identified several lineages that evolved independently for a long time. The lineages had overlapping geographic ranges but were highly specialized on different hosts. These results thus suggest that M. violaceum is a complex of highly specialized sibling species. Two incongruencies between the individual gene phylogenies and one intragene recombination event were detected at basal nodes, suggesting ancient introgression events or speciation events via hybridizations. However, incongruencies and recombination were not detected among terminal branches, indicating that the potentials for cross-infection and experimental hybridization are often not sufficient to suggest that introgressions would likely persist in nature.


Heredity | 2009

Silene as a model system in ecology and evolution.

G. Bernasconi; Janis Antonovics; Arjen Biere; Deborah Charlesworth; Lynda F. Delph; Dmitry A. Filatov; Tatiana Giraud; Michael E. Hood; Gabriel Marais; David E. McCauley; John R. Pannell; Jacqui A. Shykoff; Boris Vyskot; L. M. Wolfe; Alex Widmer

The genus Silene, studied by Darwin, Mendel and other early scientists, is re-emerging as a system for studying interrelated questions in ecology, evolution and developmental biology. These questions include sex chromosome evolution, epigenetic control of sex expression, genomic conflict and speciation. Its well-studied interactions with the pathogen Microbotryum has made Silene a model for the evolution and dynamics of disease in natural systems, and its interactions with herbivores have increased our understanding of multi-trophic ecological processes and the evolution of invasiveness. Molecular tools are now providing new approaches to many of these classical yet unresolved problems, and new progress is being made through combining phylogenetic, genomic and molecular evolutionary studies with ecological and phenotypic data.


Systematic Biology | 2008

Assessing the Performance of Single-Copy Genes for Recovering Robust Phylogenies

Gabriela Aguileta; Sylvain Marthey; Hélène Chiapello; Marc-Henri Lebrun; François Rodolphe; E. Fournier; A. Gendrault-Jacquemard; Tatiana Giraud

Phylogenies involving nonmodel species are based on a few genes, mostly chosen following historical or practical criteria. Because gene trees are sometimes incongruent with species trees, the resulting phylogenies may not accurately reflect the evolutionary relationships among species. The increase in availability of genome sequences now provides large numbers of genes that could be used for building phylogenies. However, for practical reasons only a few genes can be sequenced for a wide range of species. Here we asked whether we can identify a few genes, among the single-copy genes common to most fungal genomes, that are sufficient for recovering accurate and well-supported phylogenies. Fungi represent a model group for phylogenomics because many complete fungal genomes are available. An automated procedure was developed to extract single-copy orthologous genes from complete fungal genomes using a Markov Clustering Algorithm (Tribe-MCL). Using 21 complete, publicly available fungal genomes with reliable protein predictions, 246 single-copy orthologous gene clusters were identified. We inferred the maximum likelihood trees using the individual orthologous sequences and constructed a reference tree from concatenated protein alignments. The topologies of the individual gene trees were compared to that of the reference tree using three different methods. The performance of individual genes in recovering the reference tree was highly variable. Gene size and the number of variable sites were highly correlated and significantly affected the performance of the genes, but the average substitution rate did not. Two genes recovered exactly the same topology as the reference tree, and when concatenated provided high bootstrap values. The genes typically used for fungal phylogenies did not perform well, which suggests that current fungal phylogenies based on these genes may not accurately reflect the evolutionary relationships among species. Analyses on subsets of species showed that the phylogenetic performance did not seem to depend strongly on the sample. We expect that the best-performing genes identified here will be very useful for phylogenetic studies of fungi, at least at a large taxonomic scale. Furthermore, we compare the method developed here for finding genes for building robust phylogenies with previous ones and we advocate that our method could be applied to other groups of organisms when more complete genomes are available.


Bioinformatics | 2007

A congruence index for testing topological similarity between trees

Damien M. de Vienne; Tatiana Giraud; Olivier Martin

MOTIVATION Phylogenetic trees are omnipresent in evolutionary biology and the comparison of trees plays a central role there. Tree congruence statistics are based on the null hypothesis that two given trees are not more congruent (topologically similar) than expected by chance. Usually, one searches for the most parsimonious evolutionary scenario relating two trees and then one tests the null hypothesis by generating a high number of random trees and comparing these to the one between the observed trees. However, this approach requires a lot of computational work (human and machine) and the results depend on the evolutionary assumptions made. RESULTS We propose an index, I(cong), for testing the topological congruence between trees with any number of leaves, based on maximum agreement subtrees (MAST). This index is straightforward, simple to use, does not rely on parametrizing the likelihood of evolutionary events, and provides an associated confidence level. AVAILABILITY A web site has been created that allows rapid and easy online computation of this index and of the associated P-value at http://www.ese.u-psud.fr/bases/upresa/pages/devienne/index.html

Collaboration


Dive into the Tatiana Giraud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Gladieux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuela López-Villavicencio

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Fournier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne Ropars

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alodie Snirc

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge