Tatiana Korona
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana Korona.
Journal of Chemical Physics | 1997
Tatiana Korona; Hayes L. Williams; Robert Bukowski; Bogumil Jeziorski; Krzysztof Szalewicz
The symmetry-adapted perturbation theory (SAPT) has been employed to calculate an accurate potential energy curve for the helium dimer. For major components of the interaction energy, saturated values have been obtained using extended Gaussian-type geminal bases. Some other, less significant components were computed using a large orbital basis and the standard set of SAPT codes. The remaining small fraction of the interaction energy has been obtained using a nonstandard SAPT program specific for two-electron monomers and the supermolecular full configuration interaction (FCI) calculations in a moderately large orbital basis. Accuracy of the interaction energy components has been carefully examined. The most accurate to date values of the electrostatic, exchange, induction, and dispersion energies are reported for distances from 3.0 to 7.0 bohr. After adding the retardation correction predicted by the Casimir theory, our new potential has been shown [A. R. Janzen and R. A. Aziz (submitted)] to recover the ...
Journal of Chemical Physics | 2003
Tatiana Korona; Hans-Joachim Werner
The Equation-of-Motion coupled cluster method restricted to single and double excitations (EOM-CCSD) and singlet excited states is formulated in a basis of nonorthogonal local orbitals. In the calculation of excited states only electron promotions from localized molecular orbitals into subspaces (excitation domains) of the local basis are allowed, which strongly reduces the number of EOM-CCSD amplitudes to be optimized. Furthermore, double excitations are neglected unless the excitation domains of the corresponding localized occupied orbitals are close to each other. Unlike in the local methods for the ground state, the excitation domains cannot be simply restricted to the atomic orbitals that are spatially close to the localized occupied orbitals. In the present paper the choice of the excitation domains is based on the analysis of wave functions computed by more approximate (and cheaper) methods like, e.g., configuration-interaction singles. The effect of various local approximations is investigated in ...
Journal of Chemical Physics | 2006
Danylo Kats; Tatiana Korona; Martin Schütz
A new local method for the computation of electronic excitation energies of singlet states in extended molecular systems is presented. It is based on the CC2 model and local approximations to the wave functions. In the proposed method the singles excitations are treated nonlocally and local restrictions are imposed on doubles amplitudes only. The accuracy of the new method was tested by calculating several lowest excited states for 14 molecules and comparing them with canonical CC2 values. Deviations of the local excitation energies from the canonical reference values do not exceed 0.05 eV for all test molecules and all states in the lower energy range investigated in this work. The method uses the density-fitting approximation for all two-electron integrals, which considerably simplifies the computational complexity of the individual diagrams. A combination of the local approximations and the powerful density-fitting technique leads to a low-scaling method, capable to treat molecular systems comprised of 100 atoms and more in a basis of a polarized double zeta quality. A test calculation for a system consisting of 127 atoms and 370 active electrons without symmetry is presented to show the efficiency of the new method.
Journal of Chemical Physics | 2007
Danylo Kats; Tatiana Korona; Martin Schütz
A new ab initio method for calculating transition strengths and orbital-unrelaxed first-order properties of singlet ground and excited states of extended molecular systems is presented. It is based on coupled cluster response theory at the level of the CC2 model with local approximations introduced to the doubles-excitation part of the wave function. Density fitting is employed for the calculation of the electron repulsion integrals, so that--with the exception of doubles amplitudes--only three-indexed objects do occur in the formalism. The new method was tested by performing calculations for a set of various molecules and excited states and by comparing the results with corresponding canonical (nonlocal) calculations. It turned out that for calculating transition strengths and properties of excited states the ordinary Boughton-Pulay domains are insufficient in numerous cases. To circumvent this problem a new scheme for extending domains is proposed, which is based on the solution of the coupled perturbed localization and Hartree-Fock equations. When such extended domains are used, a satisfactory agreement between canonical and local results is achieved.
Journal of Chemical Physics | 1995
Robert Moszynski; Tatiana Korona; P.E.S. Wormer; A. van der Avoird
Symmetry‐adapted perturbation theory has been applied to compute the intermolecular potential energy surface of the He–CO complex. The interaction energy is found to be dominated by the first‐order exchange contribution and the dispersion energy. The ab initio potential has a single minimum of em=−24.895 cm−1 for the linear CO–He geometry at Rm=6.85 bohr. The computed potential energy surface has been analytically fitted and used in converged variational calculations to generate bound rovibrational states of the He–CO molecule and the infrared spectrum, which corresponds to the simultaneous excitation of vibration and internal rotation in the CO subunit within the complex. The predicted positions and intensities of lines in the infrared spectrum are in good agreement with the experimental spectrum [C.E. Chuaqui et al., J. Chem. Phys. 101, 39 (1994)]. The theoretical potential was also checked by comparison of computed excess second virial coefficients with the experimental data. The ab initio interaction ...
Journal of Chemical Physics | 1999
Anne Milet; Tatiana Korona; Robert Moszynski; Elise Kochanski
The applicability of various density functional theory (DFT) methods to describe the anisotropy of the intermolecular potential energy surfaces of hydrogen-bonded [OH−–H2O, (H2O)2] and van der Waals [CO–H2O, He–CO2] complexes has been tested by comparison with supermolecule CCSD(T) (coupled-cluster method restricted to single, double, and noniterative triple excitations) and perturbational SAPT (symmetry-adapted perturbation theory) results computed for the same geometries and with the same basis sets. It is shown that for strongly bound ionic hydrogen-bonded complexes, like OH−–H2O, hybrid approaches provide accurate results. For other systems, including the water dimer, the DFT calculations fail to reproduce the correct angular dependence of the potential surfaces. It is also shown that a hybrid functional adjusted to reproduce the CCSD(T) value of the binding energy for the water dimer produces results worse than the standard hybrid functionals for OH−–H2O, and fails to describe the correct anisotropy ...
Journal of Chemical Theory and Computation | 2009
Tatiana Korona; Andreas Hesselmann; Helena Dodziuk
Because of difficulties in a description of host-guest interactions, various theoretical methods predict different numbers of hydrogen molecules which can be inserted into the C60 cavity, ranging from one to more than 20. On the other hand, only one H2 molecule inside the C60 fullerene has been detected experimentally. Moreover, a recently synthesized H2@C70 complex prevails in the mixture formed with 2H2@C70. To get a deeper insight into the stability of the complexes created from C60 and hydrogen molecules, we carried out highly accurate calculations for complexes of one or two hydrogen molecules with fullerene applying symmetry-adapted perturbation theory (SAPT) and a large TZVPP basis set for selected points on the potential energy surfaces of H2@C60 and 2H2@C60. The electron correlation in the host and guests has been treated by density functional theory. Our calculations yield the stability of the recently synthesized H2@C60 complex. In addition, for all tried positions of the H2 dimer inside the C60 cage, the 2H2@C60 complex has been characterized by a positive interaction energy corresponding to the instability of this species. Contrary to the conclusions of several theoretical studies, this finding, as well as model considerations and literature experimental data, indicates that only one hydrogen molecule can reside inside the C60 cage. The calculated energy components have been analyzed to identify the most important contributions to the interaction energy. Supermolecular interaction energies obtained with MP2, SCS-MP2, and DFT+Disp methods are also reported and compared to those of DFT-SAPT. The DFT-SAPT interaction energy has also been calculated for several points on the potential energy surface for a larger 2H2@C70 complex, confirming, in agreement with recent experimental findings, that this species is stable. The DFT-SAPT approach has been used for the first time to obtain interaction energies for van der Waals endohedral complexes, demonstrating that the method is capable of handling such difficult cases.
Journal of Chemical Physics | 1997
T.G.A. Heijmen; Tatiana Korona; Robert Moszynski; P.E.S. Wormer; A. van der Avoird
Symmetry-adapted perturbation theory has been applied to compute the intermolecular potential-energy surface of the Ar–CH4 complex. The interaction energy, including high-level intramonomer correlation effects, is found to be dominated by the first-order exchange contribution and the dispersion energy. The ab initio potential has four equivalent minima of em=−144.30 cm−1 at Rm=7.00 bohr, for structures in which the argon atom approaches the face of the CH4 tetrahedron. The computed potential-energy surface has been analytically fitted and used in converged close-coupling calculations to generate state-to-state integral cross sections for rotational excitation of CH4 in collisions with argon. The computed cross sections are generally in good agreement with the experimental data [W. B. Chapman et al., J. Chem. Phys. 105, 3497 (1996)]. Some discrepancies for the smallest cross sections can be explained by the influence of sequential collision channels, with the use of a master equation approach.
Molecular Physics | 2006
Tatiana Korona; Michał Przybytek; Bogumil Jeziorski
Recently proposed time-independent coupled cluster theory of the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Collect. Czech. Chem. Commun. 70, 1109, 2005] has been implemented at the single and double excitations (CCSD) level. The performance of the new approach was investigated by carrying out calculations of static and dynamic electric dipole polarizabilities for various molecules and by making a comparison with values obtained from other ab initio methods, including the full configuration interaction (FCI) technique. Our results show that the polarizabilities computed with the new approach are in a good agreement with the time-dependent CCSD and (when available) FCI values. The isotropic C 6 dispersion coefficients for several benchmark van der Waals complexes, e.g. dimers of helium, argon, water, and benzene, are also reported. They compare very well with existing experimental and best theoretical data. The new propagator, implemented already in the MOLPRO package, is computationally somewhat less demanding than the propagator of the time-dependent coupled cluster theory, and can be considered as an alternative to the latter in applications to large molecules and in studies of their interactions.
Journal of Chemical Physics | 2014
Andreas Heßelmann; Tatiana Korona
Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies.