Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana M. Karafet is active.

Publication


Featured researches published by Tatiana M. Karafet.


Genome Research | 2008

New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree.

Tatiana M. Karafet; Fernando L. Mendez; Monica B. Meilerman; Peter A. Underhill; Stephen L. Zegura; Michael F. Hammer

Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.


American Journal of Human Genetics | 1999

Ancestral Asian Source(s) of New World Y-Chromosome Founder Haplotypes

Tatiana M. Karafet; Stephen L. Zegura; O. Posukh; L. Osipova; Andrew W. Bergen; Jeffrey C. Long; David Goldman; William Klitz; S. Harihara; P. de Knijff; V. Wiebe; R. C. Griffiths; Alan R. Templeton; Michael F. Hammer

Haplotypes constructed from Y-chromosome markers were used to trace the origins of Native Americans. Our sample consisted of 2,198 males from 60 global populations, including 19 Native American and 15 indigenous North Asian groups. A set of 12 biallelic polymorphisms gave rise to 14 unique Y-chromosome haplotypes that were unevenly distributed among the populations. Combining multiallelic variation at two Y-linked microsatellites (DYS19 and DXYS156Y) with the unique haplotypes results in a total of 95 combination haplotypes. Contra previous findings based on Y- chromosome data, our new results suggest the possibility of more than one Native American paternal founder haplotype. We postulate that, of the nine unique haplotypes found in Native Americans, haplotypes 1C and 1F are the best candidates for major New World founder haplotypes, whereas haplotypes 1B, 1I, and 1U may either be founder haplotypes and/or have arrived in the New World via recent admixture. Two of the other four haplotypes (YAP+ haplotypes 4 and 5) are probably present because of post-Columbian admixture, whereas haplotype 1G may have originated in the New World, and the Old World source of the final New World haplotype (1D) remains unresolved. The contrasting distribution patterns of the two major candidate founder haplotypes in Asia and the New World, as well as the results of a nested cladistic analysis, suggest the possibility of more than one paternal migration from the general region of Lake Baikal to the Americas.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide patterns of population structure and admixture among Hispanic/Latino populations

Katarzyna Bryc; Christopher Velez; Tatiana M. Karafet; Andres Moreno-Estrada; Andrew R. Reynolds; Adam Auton; Michael F. Hammer; Carlos Bustamante; Harry Ostrer

Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped on the Illumina 610-Quad arrays and 112 Mexicans genotyped on Affymetrix 500K platform. Intersecting these data with previously collected high-density SNP data from 4,305 individuals, we use principal component analysis and clustering methods FRAPPE and STRUCTURE to investigate genome-wide patterns of African, European, and Native American population structure within and among Hispanic/Latino populations. Comparing autosomal, X and Y chromosome, and mtDNA variation, we find evidence of a significant sex bias in admixture proportions consistent with disproportionate contribution of European male and Native American female ancestry to present-day populations. We also find that patterns of linkage-disequilibria in admixed Hispanic/Latino populations are largely affected by the admixture dynamics of the populations, with faster decay of LD in populations of higher African ancestry. Finally, using the locus-specific ancestry inference method LAMP, we reconstruct fine-scale chromosomal patterns of admixture. We document moderate power to differentiate among potential subcontinental source populations within the Native American, European, and African segments of the admixed Hispanic/Latino genomes. Our results suggest future genome-wide association scans in Hispanic/Latino populations may require correction for local genomic ancestry at a subcontinental scale when associating differences in the genome with disease risk, progression, and drug efficacy, as well as for admixture mapping.


Journal of Human Genetics | 2006

Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes

Michael F. Hammer; Tatiana M. Karafet; Hwayong Park; Keiichi Omoto; Shinji Harihara; Mark Stoneking; Satoshi Horai

AbstractHistoric Japanese culture evolved from at least two distinct migrations that originated on the Asian continent. Hunter-gatherers arrived before land bridges were submerged after the last glacial maximum (>12,000 years ago) and gave rise to the Jomon culture, and the Yayoi migration brought wet rice agriculture from Korea beginning ∼2,300 years ago. A set of 81 Y chromosome single nucleotide polymorphisms (SNPs) was used to trace the origins of Paleolithic and Neolithic components of the Japanese paternal gene pool, and to determine the relative contribution of Jomon and Yayoi Y chromosome lineages to modern Japanese. Our global sample consisted of >2,500 males from 39 Asian populations, including six populations sampled from across the Japanese archipelago. Japanese populations were characterized by the presence of two major (D and O) and two minor (C and N) clades of Y chromosomes, each with several sub-lineages. Haplogroup D chromosomes were present at 34.7% and were distributed in a U-shaped pattern with the highest frequency in the northern Ainu and southern Ryukyuans. In contrast, haplogroup O lineages (51.8%) were distributed in an inverted U-shaped pattern with a maximum frequency on Kyushu. Coalescent analyses of Y chromosome short tandem repeat diversity indicated that haplogroups D and C began their expansions in Japan ∼20,000 and ∼12,000 years ago, respectively, while haplogroup O-47z began its expansion only ∼4,000 years ago. We infer that these patterns result from separate and distinct genetic contributions from both the Jomon and the Yayoi cultures to modern Japanese, with varying levels of admixture between these two populations across the archipelago. The results also support the hypothesis of a Central Asian origin of Jomonese ancestors, and a Southeast Asian origin of the ancestors of the Yayoi, contra previous models based on morphological and genetic evidence.


American Journal of Human Genetics | 2001

Paternal population history of East Asia : Sources, patterns, and microevolutionary processes

Tatiana M. Karafet; Liping Xu; Ruofu Du; William S.-Y. Wang; Shi Feng; R. S. Wells; Alan J. Redd; Stephen L. Zegura; Michael F. Hammer

Asia has served as a focal point for human migration during much of the Late Pleistocene and Holocene. Clarification of East Asias role as a source and/or transit point for human dispersals requires that this regions own settlement history be understood. To this end, we examined variation at 52 polymorphic sites on the nonrecombining portion of the Y chromosome (NRY) in 1,383 unrelated males, representing 25 populations from southern East Asia (SEAS), northern East Asia (NEAS), and central Asia (CAS). The polymorphisms defined 45 global haplogroups, 28 of which were present in these three regions. Although heterozygosity levels were similar in all three regions, the average pairwise difference among haplogroups was noticeably smaller in SEAS. Multidimensional scaling analysis indicated a general separation of SEAS versus NEAS and CAS populations, and analysis of molecular variance produced very different values of Phi(ST) in NEAS and SEAS populations. In spatial autocorrelation analyses, the overall correlogram exhibited a clinal pattern; however, the NEAS populations showed evidence of both isolation by distance and ancient clines, whereas there was no evidence of structure in SEAS populations. Nested cladistic analysis demonstrated that population history events and ongoing demographic processes both contributed to the contrasting patterns of NRY variation in NEAS and SEAS. We conclude that the peopling of East Asia was more complex than earlier models had proposed-that is, a multilayered, multidirectional, and multidisciplinary framework is necessary. For instance, in addition to the previously recognized genetic and dental dispersal signals from SEAS to NEAS populations, CAS has made a significant contribution to the contemporary gene pool of NEAS, and the Sino-Tibetan expansion has left traces of a genetic trail from northern to southern China.


Forensic Science International | 2002

Forensic value of 14 novel STRs on the human Y chromosome.

Alan J. Redd; Al Agellon; Veronica A Kearney; Veronica A Contreras; Tatiana M. Karafet; Hwayong Park; Peter de Knijff; John M. Butler; Michael F. Hammer

We identified and characterized 14 novel short-tandem-repeats (STRs) on the Y chromosome and typed them in two samples, a globally diverse panel of 73 cell lines, and 148 individuals from a European-American population. These Y-STRs include eight tetranucleotide repeats (DYS449, DYS453, DYS454, DYS455, DYS456, DYS458, DYS459, and DYS464), five pentanucleotide repeats (DYS446, DYS447, DYS450, DYS452, and DYS463), and one hexanucleotide repeat (DYS448). Sequence data were obtained to designate a repeat number nomenclature. The gene diversities of an additional 22 Y-STRs, including the most commonly used in forensic databases, were directly compared in the cell line DNAs. Six of the 10 most polymorphic markers include the newly identified Y-STRs. Furthermore, these novel Y-STRs greatly improved the resolution of paternal lineages, above the level obtained with commonly used Y-STRs, in the European-American population.


Epilepsia | 2013

Exome sequencing reveals new causal mutations in children with epileptic encephalopathies

Krishna R. Veeramah; Laurel Johnstone; Tatiana M. Karafet; Daniel Wolf; Ryan Sprissler; John Salogiannis; Asa Barth-Maron; Michael E. Greenberg; Till Stuhlmann; Stefanie Weinert; Thomas J. Jentsch; Marjorie Pazzi; Linda L. Restifo; Dinesh Talwar; Robert P. Erickson; Michael F. Hammer

The management of epilepsy in children is particularly challenging when seizures are resistant to antiepileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiologic diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurologic disorders, especially those associated with abnormal brain development. Herein we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiologic diagnoses.


Human Biology | 2002

High Levels of Y-Chromosome Differentiation among Native Siberian Populations and the Genetic Signature of a Boreal Hunter-Gatherer Way of Life

Tatiana M. Karafet; Ludmila P. Osipova; Marina Gubina; Olga L. Posukh; Stephen L. Zegura; Michael F. Hammer

We examined genetic variation on the nonrecombining portion of the Y chromosome (NRY) to investigate the paternal population structure of indigenous Siberian groups and to reconstruct the historical events leading to the peopling of Siberia. A set of 62 biallelic markers on the NRY were genotyped in 1432 males representing 18 Siberian populations, as well as nine populations from Central and East Asia and one from European Russia. A subset of these markers defines the 18 major NRY haplogroups (A-R) recently described by the Y Chromosome Consortium (YCC 2002). While only four of these 18 major NRY haplogroups accounted for ~ 95% of Siberian Y-chromosome variation, native Siberian populations differed greatly in their haplogroup composition and exhibited the highest F ST value for any region of the world. When we divided our Siberian sample into four geographic regions versus five major linguistic groupings, analyses of molecular variance (AMOVA) indicated higher F ST and F CT values for linguistic groups than for geographic groups. Mantel tests also supported the existence of NRY genetic patterns that were correlated with language, indicating that language affiliation might be a better predictor of the genetic affinity among Siberians than their present geographic position. The combined results, including those from a nested cladistic analysis, underscored the important role of directed dispersals, range expansions, and long-distance colonizations bound by common ethnic and linguistic affiliation in shaping the genetic landscape of Siberia. The Siberian pattern of reduced haplogroup diversity within populations combined with high levels of differentiation among populations may be a general feature characteristic of indigenous groups that have small effective population sizes and that have been isolated for long periods of time.


Genome Research | 2015

A recent bottleneck of Y chromosome diversity coincides with a global change in culture

Monika Karmin; Lauri Saag; Mário Vicente; Melissa A. Wilson Sayres; Mari Järve; Ulvi Gerst Talas; Siiri Rootsi; Anne-Mai Ilumäe; Reedik Mägi; Mario Mitt; Luca Pagani; Tarmo Puurand; Zuzana Faltyskova; Florian Clemente; Alexia Cardona; Ene Metspalu; Hovhannes Sahakyan; Bayazit Yunusbayev; Georgi Hudjashov; Michael DeGiorgio; Eva-Liis Loogväli; Christina A. Eichstaedt; Mikk Eelmets; Gyaneshwer Chaubey; Kristiina Tambets; S. S. Litvinov; Maru Mormina; Yali Xue; Qasim Ayub; Grigor Zoraqi

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


American Journal of Physical Anthropology | 1997

Y Chromosome Markers and Trans-Bering Strait Dispersals

Tatiana M. Karafet; Stephen L. Zegura; Jennifer Vuturo-Brady; Olga L. Posukh; Ludmila P. Osipova; Victor Wiebe; Francine Romero; Jeffrey C. Long; Shinji Harihara; Feng Jin; Bumbein Dashnyam; Tudevdagva Gerelsaikhan; Keiichi Omoto; Michael F. Hammer

Five polymorphisms involving two paternally inherited loci were surveyed in 38 world populations (n = 1,631) to investigate the origins of Native Americans. One of the six Y chromosome combination haplotypes (1T) was found at relatively high frequencies (17.8-75.0%) in nine Native American populations (n = 206) representing the three major linguistic divisions in the New World. Overall, these data do not support the Greenberg et al. (1986) tripartite model for the early peopling of the Americas. The 1T haplotype was also discovered at a low frequency in Siberian Eskimos (3/22), Chukchi (1/6), and Evens (1/65) but was absent from 17 other Asian populations (n = 987). The perplexing presence of the 1T haplotype in northeastern Siberia may be due to back-migration from the New World to Asia.

Collaboration


Dive into the Tatiana M. Karafet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herawati Sudoyo

Eijkman Institute for Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Ostrer

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge