Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana P. Soares da Costa is active.

Publication


Featured researches published by Tatiana P. Soares da Costa.


Journal of Biological Chemistry | 2012

Selective inhibition of biotin protein ligase from Staphylococcus aureus.

Tatiana P. Soares da Costa; William Tieu; Min Y. Yap; Nicole R. Pendini; Steven W. Polyak; Daniel Sejer Pedersen; Renato Morona; John Turnidge; John C. Wallace; Matthew C. J. Wilce; Andrew D. Abell

Background: Inhibitors of biotin protein ligase potentially represent a new antibiotic class. Results: Biotin triazoles inhibit the BPL from Staphylococcus aureus but not the human homologue. Conclusion: Our most potent inhibitor shows cytotoxicity against S. aureus but not cultured mammalian cells. Significance: This is the first report demonstrating selective inhibition of BPL. There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class.


Biochimie | 2010

How essential is the 'essential' active-site lysine in dihydrodipicolinate synthase?

Tatiana P. Soares da Costa; Andrew C. Muscroft-Taylor; R.J. Dobson; Sean R.A. Devenish; Geoffrey B. Jameson; Juliet A. Gerrard

Dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a validated antibiotic target, catalyses the first committed step in the lysine biosynthetic pathway: the condensation reaction between (S)-aspartate beta-semialdehyde [(S)-ASA] and pyruvate via the formation of a Schiff base intermediate between pyruvate and the absolutely conserved active-site lysine. Escherichia coli DHDPS mutants K161A and K161R of the active-site lysine were characterised for the first time. Unexpectedly, the mutant enzymes were still catalytically active, albeit with a significant decrease in activity. The k(cat) values for DHDPS-K161A and DHDPS-K161R were 0.06 +/- 0.02 s(-1) and 0.16 +/- 0.06 s(-1) respectively, compared to 45 +/- 3 s(-1) for the wild-type enzyme. Remarkably, the K(M) values for pyruvate increased by only 3-fold for DHDPS-K161A and DHDPS-K161R (0.45 +/- 0.04 mM and 0.57 +/- 0.06 mM, compared to 0.15 +/- 0.01 mM for the wild-type DHDPS), while the K(M) values for (S)-ASA remained the same for DHDPS-K161R (0.12 +/- 0.01 mM) and increased by only 2-fold for DHDPS-K161A (0.23 +/- 0.02 mM) and the K(i) for lysine was unchanged. The X-ray crystal structures of DHDPS-K161A and DHDPS-K161R were solved at resolutions of 2.0 and 2.1 A respectively and showed no changes in their secondary or tertiary structures when compared to the wild-type structure. The crystal structure of DHDPS-K161A with pyruvate bound at the active site was solved at a resolution of 2.3 A and revealed a defined binding pocket for pyruvate that is thus not dependent upon lysine 161. Taken together with ITC and NMR data, it is concluded that although lysine 161 is important in the wild-type DHDPS-catalysed reaction, it is not absolutely essential for catalysis.


Journal of Molecular Medicine | 2012

A novel molecular mechanism to explain biotin-unresponsive holocarboxylase synthetase deficiency.

Lungisa Mayende; Rachel D. Swift; Lisa M. Bailey; Tatiana P. Soares da Costa; John C. Wallace; Steven W. Polyak

Biotin (vitamins H and B7) is an important micronutrient as defects in its availability, metabolism or adsorption can cause serious illnesses, especially in the young. A key molecule in the biotin cycle is holocarboxylase synthetase (HLCS), which attaches biotin onto the biotin-dependent enzymes. Patients with congenital HLCS deficiency are prescribed oral biotin supplements that, in most cases, reverse the clinical symptoms. However, some patients respond poorly to biotin therapy and have an extremely poor long-term prognosis. Whilst a small number of mutations in the HLCS gene have been implicated, the molecular mechanisms that lead to the biotin-unresponsive phenotype are not understood. To improve our understanding of HLCS, limited proteolysis was performed together with yeast two-hybrid analysis. A structured domain within the N-terminal region that contained two missense mutations was identified in patients who were refractory to biotin therapy, namely p.L216R and p.L237P. Genetic studies demonstrated that the interaction between the enzyme and the protein substrate was disrupted by mutation. Further dissection of the binding mechanism using surface plasmon resonance demonstrated that the mutations reduced affinity for the substrate through a >15-fold increase in dissociation rate. Together, these data provide the first molecular explanation for HLCS-deficient patients that do not respond to biotin therapy.


ACS Medicinal Chemistry Letters | 2012

Biotin Analogues with Antibacterial Activity Are Potent Inhibitors of Biotin Protein Ligase

Tatiana P. Soares da Costa; William Tieu; Min Y. Yap; Ondrej Zvarec; Jan M. Bell; John D. Turnidge; John C. Wallace; Matthew C. J. Wilce; Andrew D. Abell; Steven W. Polyak

There is a desperate need to develop new antibiotic agents to combat the rise of drug-resistant bacteria, such as clinically important Staphylococcus aureus. The essential multifunctional enzyme, biotin protein ligase (BPL), is one potential drug target for new antibiotics. We report the synthesis and characterization of a series of biotin analogues with activity against BPLs from S. aureus, Escherichia coli, and Homo sapiens. Two potent inhibitors with K i < 100 nM were identified with antibacterial activity against a panel of clinical isolates of S. aureus (MIC 2-16 μg/mL). Compounds with high ligand efficiency and >20-fold selectivity between the isozymes were identified and characterized. The antibacterial mode of action was shown to be via inhibition of BPL. The bimolecular interactions between the BPL and the inhibitors were defined by surface plasmon resonance studies and X-ray crystallography. These findings pave the way for second-generation inhibitors and antibiotics with greater potency and selectivity.


Chemical Science | 2013

Optimising in situ click chemistry: the screening and identification of biotin protein ligase inhibitors†

William Tieu; Tatiana P. Soares da Costa; Min Yin Yap; Kelly Lee Keeling; Matthew C. J. Wilce; John C. Wallace; Steven W. Polyak; Andrew D. Abell

A ‘leaky mutant’ (SaBPL-R122G) of Staphylococcus aureus biotin protein ligase (SaBPL) is used to enhance the turnover rate for the reaction of biotin alkyne with an azide to give a triazole. This allows the enzyme to select the optimum triazole-based inhibitor using a library of such azides in a single experiment with greatly improved efficiency and sensitivity of detection, difficulties that can restrict the general utility of a multi-component in situ click approach to ligand optimisation.


Biochimie | 2010

New insights into the mechanism of dihydrodipicolinate synthase using isothermal titration calorimetry

Andrew C. Muscroft-Taylor; Tatiana P. Soares da Costa; Juliet A. Gerrard

Thermodynamic binding information, obtained via isothermal titration calorimetry (ITC), provides new insights into the binding of substrates, and of allosteric inhibitor interactions of dihydrodipicolinate synthase (DHDPS) from Escherichia coli. DHDPS catalyses the first committed step in (S)-lysine biosynthesis: the Schiff-base mediated aldol condensation of pyruvate with (S)-aspartate semi-aldehyde. Binding studies indicate that pyruvate is a weak binder (0.023 mM) but that (S)-ASA does not interact with the enzyme in the absence of a Schiff-base with pyruvate. These results support the assignment of a ping pong catalytic mechanism in which enthalpically driven Schiff-base formation (DeltaH = -44.5 +/- 0.1 kJ mol(-1)) provides the thermodynamic impetus for pyruvate association. The second substrate, (S)-ASA, was observed to bind to a Schiff-base mimic (DeltaH = -2.8 +/- 0.1 kJ mol(-1)) formed through the reduction of the intermediate pyruvyl-Schiff-base complex. The binding interaction of (S)-lysine was characterised as a cooperative event in which an entropic pre-organisation step (TDeltaS = 17.6 +/- 1.1 kJ mol(-1)) precedes a secondary enthalpic association (DeltaH = -21.6 +/- 0.2 kJ mol(-1)). This allosteric association was determined to be of a mixed competitive nature in which heterotropic ligand cooperativity was observed to subtly influence the binding events. These results offer new insights into the inhibition of this enzyme, a validated antibiotic target.


Current Topics in Medicinal Chemistry | 2013

Structure Guided Design of Biotin Protein Ligase Inhibitors for Antibiotic Discovery

Ashleigh S. Paparella; Tatiana P. Soares da Costa; Min Y. Yap; William Tieu; Matthew C. J. Wilce; Andrew D. Abell; Steven W. Polyak

Biotin protein ligase (BPL) represents a promising target for the discovery of new antibacterial chemotherapeutics. Here we review the central role of BPL for the survival and virulence of clinically important Staphylococcus aureus in support of this claim. X-ray crystallography structures of BPLs in complex with ligands and small molecule inhibitors provide new insights into the mechanism of protein biotinylation, and a template for structure guided approaches to the design of inhibitors for antibacterial discovery. Most BPLs employ an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5´-AMP from substrates biotin and ATP. Recent studies reporting chemical analogs of biotin and biotinyl-5´-AMP as BPL inhibitors that represent new classes of anti-S. aureus agents are reviewed. We highlight strategies to selectively inhibit bacterial BPL over the mammalian equivalent using a 1,2,3-triazole isostere to replace the labile phosphoanhydride naturally present in biotinyl-5´-AMP. A novel in situ approach to improve the detection of triazole-based inhibitors is also presented that could potentially be widely applied to other protein targets.


Methods in Enzymology | 2015

Quaternary Structure Analyses of an Essential Oligomeric Enzyme

Tatiana P. Soares da Costa; Janni B. Christensen; Sebastien Desbois; Shane E. Gordon; Ruchi Gupta; Campbell J. Hogan; Tao G. Nelson; Matthew T. Downton; Chamodi K. Gardhi; Belinda M. Abbott; John Wagner; Santosh Panjikar; Matthew A. Perugini

Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.


Structure | 2016

Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target

Tatiana P. Soares da Costa; Sebastien Desbois; Con Dogovski; Michael A. Gorman; Natalia E. Ketaren; Jason J. Paxman; Tanzeela Siddiqui; Leanne M. Zammit; Belinda M. Abbott; Roy M. Robins-Browne; Michael W. Parker; Geoffrey B. Jameson; Nathan E. Hall; Santosh Panjikar; Matthew A. Perugini

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.


Journal of Biological Chemistry | 2016

Dimerization of Bacterial Diaminopimelate Decarboxylase is Essential for Catalysis

Martin G. Peverelli; Tatiana P. Soares da Costa; Nigel Kirby; Matthew A. Perugini

Diaminopimelate decarboxylase (DAPDC) catalyzes the final step in the diaminopimelate biosynthesis pathway of bacteria. The product of the reaction is the essential amino acid l-lysine, which is an important precursor for the synthesis of the peptidoglycan cell wall, housekeeping proteins, and virulence factors of bacteria. Accordingly, the enzyme is a promising antibacterial target. Previous structural studies demonstrate that DAPDC exists as monomers, dimers, and tetramers in the crystal state. However, the active oligomeric form has not yet been determined. We show using analytical ultracentrifugation, small angle x-ray scattering, and enzyme kinetic analyses in solution that the active form of DAPDC from Bacillus anthracis, Escherichia coli, Mycobacterium tuberculosis, and Vibrio cholerae is a dimer. The importance of dimerization was probed further by generating dimerization interface mutants (N381A and R385A) of V. cholerae DAPDC. Our studies indicate that N381A and R385A are significantly attenuated in catalytic activity, thus confirming that dimerization of DAPDC is essential for function. These findings provide scope for the development of new antibacterial agents that prevent DAPDC dimerization.

Collaboration


Dive into the Tatiana P. Soares da Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge