Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana Popova is active.

Publication


Featured researches published by Tatiana Popova.


Cancer Research | 2012

Ploidy and Large-Scale Genomic Instability Consistently Identify Basal-like Breast Carcinomas with BRCA1/2 Inactivation

Tatiana Popova; Elodie Manié; Guillaume Rieunier; Virginie Caux-Moncoutier; Carole Tirapo; Thierry Dubois; Olivier Delattre; Brigitte Sigal-Zafrani; Marc A. Bollet; Michel Longy; Claude Houdayer; Xavier Sastre-Garau; Anne Vincent-Salomon; Dominique Stoppa-Lyonnet; Marc-Henri Stern

BRCA1 inactivation is a frequent event in basal-like breast carcinomas (BLC). However, BRCA1 can be inactivated by multiple mechanisms and determining its status is not a trivial issue. As an alternate approach, we profiled 65 BLC cases using single-nucleotide polymorphism arrays to define a signature of BRCA1-associated genomic instability. Large-scale state transitions (LST), defined as chromosomal break between adjacent regions of at least 10 Mb, were found to be a robust indicator of BRCA1 status in this setting. Two major ploidy-specific cutoffs in LST distributions were sufficient to distinguish highly rearranged BLCs with 85% of proven BRCA1-inactivated cases from less rearranged BLCs devoid of proven BRCA1-inactivated cases. The genomic signature we defined was validated in a second independent series of 55 primary BLC cases and 17 BLC-derived tumor cell lines. High numbers of LSTs resembling BRCA1-inactivated BLC were observed in 4 primary BLC cases and 2 BLC cell lines that harbored BRCA2 mutations. Overall, the genomic signature we defined predicted BRCA1/2 inactivation in BLCs with 100% sensitivity and 90% specificity (97% accuracy). This assay may ease the challenge of selecting patients for genetic testing or recruitment to clinical trials of novel emerging therapies that target DNA repair deficiencies in cancer.


Genome Biology | 2009

Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays

Tatiana Popova; Elodie Manié; Dominique Stoppa-Lyonnet; Guillem Rigaill; Emmanuel Barillot; Marc Stern

We describe a method for automatic detection of absolute segmental copy numbers and genotype status in complex cancer genome profiles measured with single-nucleotide polymorphism (SNP) arrays. The method is based on pattern recognition of segmented and smoothed copy number and allelic imbalance profiles. Assignments were verified by DNA indexes of primary tumors and karyotypes of cell lines. The method performs well even for poor-quality data, low tumor content, and highly rearranged tumor genomes.


American Journal of Human Genetics | 2013

Germline BAP1 Mutations Predispose to Renal Cell Carcinomas

Tatiana Popova; Lucie Hebert; Virginie Jacquemin; Sophie Gad; Virginie Caux-Moncoutier; Catherine Dubois d’Enghien; Bénédicte Richaudeau; Xavier Renaudin; Jason Sellers; André Nicolas; Xavier Sastre-Garau; Laurence Desjardins; Gabor Gyapay; Virginie Raynal; Olga M. Sinilnikova; Nadine Andrieu; Elodie Manié; Antoine de Pauw; Paul Gesta; Valérie Bonadona; Christine Maugard; Clotilde Penet; Marie-Françoise Avril; Emmanuel Barillot; Odile Cabaret; Olivier Delattre; Stéphane Richard; Olivier Caron; M. Benfodda; Hui-Han Hu

The genetic cause of some familial nonsyndromic renal cell carcinomas (RCC) defined by at least two affected first-degree relatives is unknown. By combining whole-exome sequencing and tumor profiling in a family prone to cases of RCC, we identified a germline BAP1 mutation c.277A>G (p.Thr93Ala) as the probable genetic basis of RCC predisposition. This mutation segregated with all four RCC-affected relatives. Furthermore, BAP1 was found to be inactivated in RCC-affected individuals from this family. No BAP1 mutations were identified in 32 familial cases presenting with only RCC. We then screened for germline BAP1 deleterious mutations in familial aggregations of cancers within the spectrum of the recently described BAP1-associated tumor predisposition syndrome, including uveal melanoma, malignant pleural mesothelioma, and cutaneous melanoma. Among the 11 families that included individuals identified as carrying germline deleterious BAP1 mutations, 6 families presented with 9 RCC-affected individuals, demonstrating a significantly increased risk for RCC. This strongly argues that RCC belongs to the BAP1 syndrome and that BAP1 is a RCC-predisposition gene.


Nature Communications | 2016

Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage

Samar Alsafadi; Alexandre Houy; Aude Battistella; Tatiana Popova; Michel Wassef; Emilie Henry; Franck Tirode; Angelos Constantinou; Sophie Piperno-Neumann; Sergio Roman-Roman; Martin Dutertre; Marc-Henri Stern

Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease.


The Journal of Pathology | 2012

A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers

Rachael Natrajan; Alan Mackay; Maryou B. Lambros; Britta Weigelt; Paul M. Wilkerson; Elodie Manié; Anita Grigoriadis; Roger A'Hern; Petra van der Groep; Iwanka Kozarewa; Tatiana Popova; Odette Mariani; Samra Turajlic; Simon J. Furney; Richard Marais; Daniel-Nava Rodruigues; Adriana C Flora; Patty Wai; Vidya Pawar; Simon S. McDade; Jason S. Carroll; Dominique Stoppa-Lyonnet; Andrew R. Green; Ian O. Ellis; Charles Swanton; Paul J. van Diest; Olivier Delattre; Christopher J. Lord; William D. Foulkes; Anne Vincent-Salomon

BRCA1 encodes a tumour suppressor protein that plays pivotal roles in homologous recombination (HR) DNA repair, cell‐cycle checkpoints, and transcriptional regulation. BRCA1 germline mutations confer a high risk of early‐onset breast and ovarian cancer. In more than 80% of cases, tumours arising in BRCA1 germline mutation carriers are oestrogen receptor (ER)‐negative; however, up to 15% are ER‐positive. It has been suggested that BRCA1 ER‐positive breast cancers constitute sporadic cancers arising in the context of a BRCA1 germline mutation rather than being causally related to BRCA1 loss‐of‐function. Whole‐genome massively parallel sequencing of ER‐positive and ER‐negative BRCA1 breast cancers, and their respective germline DNAs, was used to characterize the genetic landscape of BRCA1 cancers at base‐pair resolution. Only BRCA1 germline mutations, somatic loss of the wild‐type allele, and TP53 somatic mutations were recurrently found in the index cases. BRCA1 breast cancers displayed a mutational signature consistent with that caused by lack of HR DNA repair in both ER‐positive and ER‐negative cases. Sequencing analysis of independent cohorts of hereditary BRCA1 and sporadic non‐BRCA1 breast cancers for the presence of recurrent pathogenic mutations and/or homozygous deletions found in the index cases revealed that DAPK3, TMEM135, KIAA1797, PDE4D, and GATA4 are potential additional drivers of breast cancers. This study demonstrates that BRCA1 pathogenic germline mutations coupled with somatic loss of the wild‐type allele are not sufficient for hereditary breast cancers to display an ER‐negative phenotype, and has led to the identification of three potential novel breast cancer genes (ie DAPK3, TMEM135, and GATA4). Copyright


Genome Research | 2015

The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer

Ronan Chaligné; Tatiana Popova; Marco-Antonio Mendoza-Parra; Mohamed-Ashick M. Saleem; David Gentien; Kristen Ban; Tristan Piolot; Olivier Leroy; Odette Mariani; Hinrich Gronemeyer; Anne Vincent-Salomon; Marc-Henri Stern; Edith Heard

Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome, including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chromosome as an epigenetic biomarker at the molecular and cytological levels in cancer.


Frontiers in Genetics | 2014

Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial

Nicolas Servant; Julien Roméjon; Pierre Gestraud; Philippe La Rosa; Georges Lucotte; Séverine Lair; Virginie Bernard; Bruno Zeitouni; Fanny Coffin; Gérôme Jules-Clément; Florent Yvon; Alban Lermine; Patrick Poullet; Stéphane Liva; Stuart Pook; Tatiana Popova; Camille Barette; François Prud’homme; Jean-Gabriel Dick; Maud Kamal; Christophe Le Tourneau; Emmanuel Barillot; Philippe Hupé

Precision medicine (PM) requires the delivery of individually adapted medical care based on the genetic characteristics of each patient and his/her tumor. The last decade witnessed the development of high-throughput technologies such as microarrays and next-generation sequencing which paved the way to PM in the field of oncology. While the cost of these technologies decreases, we are facing an exponential increase in the amount of data produced. Our ability to use this information in daily practice relies strongly on the availability of an efficient bioinformatics system that assists in the translation of knowledge from the bench towards molecular targeting and diagnosis. Clinical trials and routine diagnoses constitute different approaches, both requiring a strong bioinformatics environment capable of (i) warranting the integration and the traceability of data, (ii) ensuring the correct processing and analyses of genomic data, and (iii) applying well-defined and reproducible procedures for workflow management and decision-making. To address the issues, a seamless information system was developed at Institut Curie which facilitates the data integration and tracks in real-time the processing of individual samples. Moreover, computational pipelines were developed to identify reliably genomic alterations and mutations from the molecular profiles of each patient. After a rigorous quality control, a meaningful report is delivered to the clinicians and biologists for the therapeutic decision. The complete bioinformatics environment and the key points of its implementation are presented in the context of the SHIVA clinical trial, a multicentric randomized phase II trial comparing targeted therapy based on tumor molecular profiling versus conventional therapy in patients with refractory cancer. The numerous challenges faced in practice during the setting up and the conduct of this trial are discussed as an illustration of PM application.


Cancer Research | 2016

Ovarian Cancers Harboring Inactivating Mutations in CDK12 Display a Distinct Genomic Instability Pattern Characterized by Large Tandem Duplications.

Tatiana Popova; Elodie Manié; Valentina Boeva; Aude Battistella; Oumou Goundiam; Nicholas Smith; Christopher R. Mueller; Virginie Raynal; Odette Mariani; Xavier Sastre-Garau; Marc-Henri Stern

CDK12 is a recurrently mutated gene in serous ovarian carcinoma, whose downregulation is associated with impaired expression of DNA damage repair genes and subsequent hypersensitivity to DNA-damaging agents and PARP1/2 inhibitors. In this study, we investigated the genomic landscape associated with CDK12 inactivation in patients with serous ovarian carcinoma. We show that CDK12 loss was consistently associated with a particular genomic instability pattern characterized by hundreds of tandem duplications of up to 10 megabases (Mb) in size. Tandem duplications were characterized by a bimodal (∼0.3 and ∼3 Mb) size distribution and overlapping microhomology at the breakpoints. This genomic instability, denoted as the CDK12 TD-plus phenotype, is remarkably distinct from other alteration patterns described in breast and ovarian cancers. The CDK12 TD-plus phenotype was associated with a greater than 10% gain in genomic content and occurred at a 3% to 4% rate in The Cancer Genome Atlas-derived and in-house cohorts of patients with serous ovarian carcinoma. Moreover, CDK12-inactivating mutations together with the TD-plus phenotype were also observed in prostate cancers. Our finding provides new insight toward deciphering the function of CDK12 in genome maintenance and oncogenesis. Cancer Res; 76(7); 1882-91. ©2016 AACR.


Modern Pathology | 2015

Metastatic breast carcinomas display genomic and transcriptomic heterogeneity

Britta Weigelt; Charlotte K.Y. Ng; Ronglai Shen; Tatiana Popova; Michail Schizas; Rachael Natrajan; Odette Mariani; Marc-Henri Stern; Larry Norton; Anne Vincent-Salomon; Jorge S. Reis-Filho

Metaplastic breast carcinoma is a rare and aggressive histologic type of breast cancer, preferentially displaying a triple-negative phenotype. We sought to define the transcriptomic heterogeneity of metaplastic breast cancers on the basis of current gene expression microarray-based classifiers, and to determine whether these tumors display gene copy number profiles consistent with those of BRCA1-associated breast cancers. Twenty-eight consecutive triple-negative metaplastic breast carcinomas were reviewed, and the metaplastic component present in each frozen specimen was defined (ie, spindle cell, squamous, chondroid metaplasia). RNA and DNA extracted from frozen sections with tumor cell content >60% were subjected to gene expression (Illumina HumanHT-12 v4) and copy number profiling (Affymetrix SNP 6.0), respectively. Using the best practice PAM50/claudin-low microarray-based classifier, all metaplastic breast carcinomas with spindle cell metaplasia were of claudin-low subtype, whereas those with squamous or chondroid metaplasia were preferentially of basal-like subtype. Triple-negative breast cancer subtyping using a dedicated website (http://cbc.mc.vanderbilt.edu/tnbc/) revealed that all metaplastic breast carcinomas with chondroid metaplasia were of mesenchymal-like subtype, spindle cell carcinomas preferentially of unstable or mesenchymal stem-like subtype, and those with squamous metaplasia were of multiple subtypes. None of the cases was classified as immunomodulatory or luminal androgen receptor subtype. Integrative clustering, combining gene expression and gene copy number data, revealed that metaplastic breast carcinomas with spindle cell and chondroid metaplasia were preferentially classified as of integrative clusters 4 and 9, respectively, whereas those with squamous metaplasia were classified into six different clusters. Eight of the 26 metaplastic breast cancers subjected to SNP6 analysis were classified as BRCA1-like. The diversity of histologic features of metaplastic breast carcinomas is reflected at the transcriptomic level, and an association between molecular subtypes and histology was observed. BRCA1-like genomic profiles were found only in a subset (31%) of metaplastic breast cancers, and were not associated with a specific molecular or histologic subtype.


Leukemia | 2014

A common alternative splicing signature is associated with SF3B1 mutations in malignancies from different cell lineages

David Gentien; Kosmider O; Nguyen-Khac F; Albaud B; Audrey Rapinat; Amaury Dumont; Damm F; Tatiana Popova; Richard Marais; Fontenay M; Sergio Roman-Roman; Bernard Oa; Marc-Henri Stern

A common alternative splicing signature is associated with SF3B1 mutations in malignancies from different cell lineages

Collaboration


Dive into the Tatiana Popova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britta Weigelt

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachael Natrajan

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge