Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana V. Karpinets is active.

Publication


Featured researches published by Tatiana V. Karpinets.


Applied and Environmental Microbiology | 2011

Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types.

Neil R. Gottel; Hector F. Castro; Marilyn K. Kerley; Zamin Yang; Dale A. Pelletier; Mircea Podar; Tatiana V. Karpinets; Ed Uberbacher; Gerald A. Tuskan; Rytas Vilgalys; Mitchel J. Doktycz; Christopher W. Schadt

ABSTRACT The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.


Glycobiology | 2010

CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database

Byung H. Park; Tatiana V. Karpinets; Mustafa H Syed; Michael R. Leuze; Edward C. Uberbacher

The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire nonredundant sequences of the CAZy database. The second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit, and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

Steven D. Brown; Adam M. Guss; Tatiana V. Karpinets; Jerry M. Parks; Nikolai Smolin; Shihui Yang; Miriam Land; Dawn M. Klingeman; Ashwini Bhandiwad; Miguel Rodriguez; Babu Raman; Xiongjun Shao; Jonathan R. Mielenz; Jeremy C. Smith; Martin Keller; Lee R. Lynd

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.


BMC Biology | 2006

RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

Tatiana V. Karpinets; D. J. Greenwood; Carl E. Sams; J. T. Ammons

BackgroundMean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth.ResultsIt was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms.ConclusionOur results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans.


PLOS ONE | 2011

Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum equitans--Ignicoccus hospitalis relationship.

Richard J. Giannone; Harald Huber; Tatiana V. Karpinets; Thomas Heimerl; Ulf Küper; Reinhard Rachel; Martin Keller; Robert L. Hettich; Mircea Podar

Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its hosts metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis.


Nucleic Acids Research | 2012

Analyzing large biological datasets with association networks

Tatiana V. Karpinets; Byung H. Park; Edward C. Uberbacher

Due to advances in high-throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches that process collected data into new knowledge in a timely manner. In this study, we propose a computational framework for discovering modular structure, relationships and regularities in complex data. The framework utilizes a semantic-preserving vocabulary to convert records of biological annotations of an object, such as an organism, gene, chemical or sequence, into networks (Anets) of the associated annotations. An association between a pair of annotations in an Anet is determined by the similarity of their co-occurrence pattern with all other annotations in the data. This feature captures associations between annotations that do not necessarily co-occur with each other and facilitates discovery of the most significant relationships in the collected data through clustering and visualization of the Anet. To demonstrate this approach, we applied the framework to the analysis of metadata from the Genomes OnLine Database and produced a biological map of sequenced prokaryotic organisms with three major clusters of metadata that represent pathogens, environmental isolates and plant symbionts.


Annals of Botany | 2008

A Unifying Concept for the Dependence of Whole-crop N : P Ratio on Biomass: Theory and Experiment

D. J. Greenwood; Tatiana V. Karpinets; Kefeng Zhang; Angela Bosh-Serra; Arianna Boldrini; Lyudmila Karawulova

BACKGROUND AND AIMS Numerous estimates have been made of the concentrations of N and P required for good growth of crop species but they have not been defined by any unifying model. The aim of the present study was to develop such a model for the dependence of the N : P ratio on crop mass, to test its validity and to use it to identify elements of similarity between different crop species and wild plants. METHODS A model was derived between plant N : P ratio (Rw) and its dry biomass per unit area (W) during growth with near optimum nutrition by considering that plants consist of growth-related tissue and storage-related tissue with N : P ratios Rg and Rs, respectively. Testing and calibration against experimental data on different crop species led to a simple equation between Rw and W which was tested against independent experimental data. KEY RESULTS The validity of the model and equation was supported by 365 measurements of Rw in 38 field experiments on crops. Rg and Rs remained approximately constant throughout growth, with average values of 11.8 and 5.8 by mass. The model also approximately predicted the relationships between leaf N and P concentrations in 124 advisory estimates on immature tissues and in 385 wild species from published global surveys. CONCLUSIONS The N : P ratio of the biomass of very different crops, during growth with near optimum levels of nutrients, is defined entirely in terms of crop biomass, an average N : P ratio of the storage/structure-related tissue of the crop and an average N : P ratio of the growth-related tissue. The latter is similar to that found in leaves of many wild plant species, and even micro-organisms and terrestrial and freshwater autotrophs.


Journal of Bacteriology | 2011

Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44

Archana Chauhan; Alice C. Layton; Daniel E. Williams; Abby E. Smartt; Steven Ripp; Tatiana V. Karpinets; Steven D. Brown; Gary S. Sayler

Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.


Current Genomics | 2006

Bacterial Stationary-State Mutagenesis and Mammalian Tumorigenesis as Stress-Induced Cellular Adaptations and the Role of Epigenetics

Tatiana V. Karpinets; D. J. Greenwood; I. P. Pogribny; N. F. Samatova

Mechanisms of cellular adaptation may have some commonalities across different organisms. Revealing these common mechanisms may provide insight in the organismal level of adaptation and suggest solutions to important problems related to the adaptation. An increased rate of mutations, referred as the mutator phenotype, and beneficial nature of these mutations are common features of the bacterial stationary-state mutagenesis and of the tumorigenic transformations in mammalian cells. We argue that these commonalities of mammalian and bacterial cells result from their stress-induced adaptation that may be described in terms of a common model. Specifically, in both organisms the mutator phenotype is activated in a subpopulation of proliferating stressed cells as a strategy to survival. This strategy is an alternative to other survival strategies, such as senescence and programmed cell death, which are also activated in the stressed cells by different subpopulations. Sustained stress-related proliferative signalling and epigenetic mechanisms play a decisive role in the choice of the mutator phenotype survival strategy in the cells. They reprogram cellular functions by epigenetic silencing of cell-cycle inhibitors, DNA repair, programmed cell death, and by activation of repetitive DNA elements. This reprogramming leads to the mutator phenotype that is implemented by error-prone cell divisions with the involvement of Y family polymerases. Studies supporting the proposed model of stress-induced cellular adaptation are discussed. Cellular mechanisms involved in the bacterial stress-induced adaptation are considered in more detail.


PLOS ONE | 2009

Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

Tatiana V. Karpinets; Dale A. Pelletier; Chongle Pan; Edward C. Uberbacher; Galina Melnichenko; Robert L. Hettich; Nagiza F. Samatova

Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions.

Collaboration


Dive into the Tatiana V. Karpinets's collaboration.

Top Co-Authors

Avatar

Edward C. Uberbacher

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Byung H. Park

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Byung-Hoon Park

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mustafa H Syed

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nagiza F. Samatova

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven D. Brown

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew Futreal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Guruprasad Kora

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge