Tatiana Wuytack
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana Wuytack.
Environmental Pollution | 2010
Fatemeh Kardel; Karen Wuyts; Manoochehr Babanezhad; U.W.A. Vitharana; Tatiana Wuytack; G. Potters; Roeland Samson
This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality.
Environmental Monitoring and Assessment | 2010
Tatiana Wuytack; Kris Verheyen; Karen Wuyts; Fatemeh Kardel; Sandy Adriaenssens; Roeland Samson
In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (−11%) and stomatal width (−14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.
Environmental Pollution | 2011
Tatiana Wuytack; Karen Wuyts; Stefan Van Dongen; Lander Baeten; Fatemeh Kardel; Kris Verheyen; Roeland Samson
We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO(x) and O(3) concentrations had only a marginal influence. The influence of SO(2) concentration was negligible. Although our data analysis suggests a relationship between SLA and NO(x)/O(3) concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution.
Science of The Total Environment | 2015
Karen Wuyts; Sandy Adriaenssens; Jeroen Staelens; Tatiana Wuytack; Shari Van Wittenberghe; Pascal Boeckx; Roeland Samson; Kris Verheyen
We investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH₄NO₃ to the soil at rates from 0 to 200 kg N ha(-1)y(-1), were individually exposed to 100 μl of artificial rainwater containing (15)NH₄(+) or (15)NO₃(-) at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH₄(+) at the highest concentration only. The N form and the N concentration in the applied rainwater and, to a lesser extent, the pedospheric N treatment and the leaf traits affected the aqueous foliar N uptake. The foliar uptake of NH₄(+) by birch increased when leaves were more wettable. High leaf N concentration and leaf mass per area enhanced the foliar N uptake, and NO₃(-) uptake in particular, by birch. Variation in the foliar N uptake by the beech trees could not be explained by the leaf traits considered. In the first experiment, N fertilisation stimulated the foliar N uptake in both species, which was on average 1.42-1.78 times higher at the highest soil N dose than at the zero dose. However, data variability was high and the effect was not appreciable in the second experiment. Our data suggest that next to rainwater chemistry (N form and concentration) also forest N status could play a role in the partitioning of N entering the ecosystem through the soil and the canopy. Models of canopy uptake of aqueous N at the leaf level should take account of leaf traits such as wettability and N concentration.
Environmental Pollution | 2013
Fatemeh Kardel; Karen Wuyts; Ali Reza Khavaninzhadeh; Tatiana Wuytack; Manoochehr Babanezhad; Roeland Samson
Leaf saturation isothermal remanent magnetisation (SIRM) is known as a good proxy of atmospheric, traffic related particulate matter (PM) concentration. In this study, we compared leaf SIRM with Leaf area (LA), leaf dry weight (LDW), specific leaf area (SLA), stomatal density (SD), relative chlorophyll content (RCC), chlorophyll fluorescence parameters (Fv/Fm and PI) for three urban tree types in the city of Ghent, Belgium. A negative significant relationship of LA, LDW and Fv/Fm, and a positive significant relationship of SLA with leaf SIRM was observed. Among all considered parameters, leaf SIRM had the highest potential for discrimination between contrasting land use classes. It was concluded that urban habitat quality can be monitored with leaf SIRM, independent of the other above mentioned plant parameters. The anatomical, morphological and physiological tree leaf characteristics considered are not good indicators for atmospheric PM, but might be interesting bio-indicators of other air pollutants than PM.
Plant Physiology and Biochemistry | 2013
Tatiana Wuytack; Hamada AbdElgawad; Jeroen Staelens; Han Asard; Pascal Boeckx; Kris Verheyen; Roeland Samson
In this study we aimed to determine and elucidate the effect of ambient air pollution on the foliar antioxidant system and stable carbon and nitrogen isotopes of white willow (Salix alba L.). We grew white willow in uniform potting soil in the near vicinity of sixteen air quality monitoring stations in Belgium where nitrogen dioxide (NO2), ozone, sulfur dioxide and particulate matter concentrations were continuously measured. The trees were exposed to ambient air during six months (April-September 2011), and, thereafter, the degree of lipid peroxidation and foliar content of antioxidant molecules (ascorbate, glutathione, polyphenols, flavonoids), antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, peroxidase) and foliar stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes were measured. We found that lipid peroxidation was caused by air pollution stress, arising from high ambient NO2 concentrations, as shown by an increased amount of malondialdehyde. The antioxidant system was activated by increasing the amount of polyphenols at monitoring stations with a high atmospheric NO2 and low O3 concentration, while no increase of key enzymes (e.g., ascorbate, glutathione) was observed. The δ(13)C also decreased with increasing NO2 concentrations and decreasing O3 concentrations, probably reflecting a decreased net photosynthesis and/or a concomitant decrease of (13)CO2 in the atmosphere. Shade also influenced foliar δ(13)C and the content of leaf ascorbate and glutathione.
Water Air and Soil Pollution | 2011
Sandy Adriaenssens; Jeroen Staelens; Karen Wuyts; An De Schrijver; Shari Van Wittenberghe; Tatiana Wuytack; Fatemeh Kardel; Kris Verheyen; Roeland Samson; Pascal Boeckx
Environmental and Experimental Botany | 2012
Fatemeh Kardel; Karen Wuyts; Manoochehr Babanezhad; Tatiana Wuytack; Sandy Adriaenssens; Roeland Samson
Water Air and Soil Pollution | 2013
Tatiana Wuytack; Roeland Samson; Karen Wuyts; Sandy Adriaenssens; Fatemeh Kardel; Kris Verheyen
Water Air and Soil Pollution | 2013
Tatiana Wuytack; Karen Verheyen; Karen Wuyts; Sandy Adriaenssens; Jeroen Staelens; Roeland Samson