Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana Zavorotinskaya is active.

Publication


Featured researches published by Tatiana Zavorotinskaya.


Blood | 2013

Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation

Jing Lu; Tatiana Zavorotinskaya; Yumin Dai; Xiaohong Niu; Joseph Castillo; Janet Sim; Jianjun Yu; Yingyun Wang; John L. Langowski; Jocelyn Holash; Kevin Shannon; Pablo Garcia

Multiple myeloma (MM) is the second most common hematologic malignancy. Despite recent treatment advances, it remains incurable. Here, we report that Pim2 kinase expression is highly elevated in MM cells and demonstrate that it is required for MM cell proliferation. Functional interference of Pim2 activity either by short hairpin RNAs or by a potent and selective small-molecule inhibitor leads to significant inhibition of MM cell proliferation. Pim inhibition results in a significant decrease of mammalian target of rapamycin C1 (mTOR-C1) activity, which is critical for cell proliferation. We identify TSC2, a negative regulator of mTOR-C1, as a novel Pim2 substrate and show that Pim2 directly phosphorylates TSC2 on Ser-1798 and relieves the suppression of TSC2 on mTOR-C1. These findings support Pim2 as a promising therapeutic target for MM and define a novel Pim2-TSC2-mTOR-C1 pathway that drives MM proliferation.


Clinical Cancer Research | 2014

Pan-PIM Kinase Inhibition Provides a Novel Therapy for Treating Hematologic Cancers

Pablo Garcia; John L. Langowski; Ying A. Wang; Chen M; Castillo J; Christie Fanton; Ison M; Tatiana Zavorotinskaya; Yumin Dai; Lu J; Xiaohong Niu; Basham S; Chan J; Yu J; Doyle M; Paul Feucht; Warne R; Narberes J; Tsang T; Fritsch C; Audrey Kauffmann; Pfister E; Drueckes P; Trappe J; Christopher J. Wilson; Han W; Lan J; Nishiguchi G; Lindvall M; Bellamacina C

Purpose: PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies. Experimental Design: Pan-PIM inhibitors have proven difficult to develop because PIM2 has a low Km for ATP and, thus, requires a very potent inhibitor to effectively block the kinase activity at the ATP levels in cells. We developed a potent and specific pan-PIM inhibitor, LGB321, which is active on PIM2 in the cellular context. Results: LGB321 is active on PIM2-dependent multiple myeloma cell lines, where it inhibits proliferation, mTOR-C1 signaling and phosphorylation of BAD. Broad cancer cell line profiling of LGB321 demonstrates limited activity in cell lines derived from solid tumors. In contrast, significant activity in cell lines derived from diverse hematological lineages was observed, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), multiple myeloma and non-Hodgkin lymphoma (NHL). Furthermore, we demonstrate LGB321 activity in the KG-1 AML xenograft model, in which modulation of pharmacodynamics markers is predictive of efficacy. Finally, we demonstrate that LGB321 synergizes with cytarabine in this model. Conclusions: We have developed a potent and selective pan-PIM inhibitor with single-agent antiproliferative activity and show that it synergizes with cytarabine in an AML xenograft model. Our results strongly support the development of Pan-PIM inhibitors to treat hematologic malignancies. Clin Cancer Res; 20(7); 1834–45. ©2014 AACR.


Journal of Virology | 2004

A Point Mutation in the Binding Subunit of a Retroviral Envelope Protein Arrests Virus Entry at Hemifusion

Tatiana Zavorotinskaya; Zhaohui Qian; John Franks; Lorraine M. Albritton

ABSTRACT The transmembrane subunits of viral envelope proteins are thought to perform all of the functions required for membrane fusion during entry of enveloped viruses. However, changes in a conserved SPHQ motif near the N terminus of the receptor binding subunit of a murine leukemia virus (MLV) envelope protein block infection and induction of cell-cell fusion but not receptor binding. Here we report evidence that a histidine-to-arginine change at position 8 (H8R) in the SPHQ motif of Moloney MLV blocks infection by arresting virus-cell fusion at the hemifusion state. In cell-cell fusion assays, H8R envelope protein induced mixing of membrane outer leaflet lipids but did not lead to content mixing, a finding indicative of fusion pore formation. Kinetic studies of virus-cell fusion showed that lipid mixing of H8R virus membranes begins much later than for wild-type virus. The length of the delay in lipid mixing decreased upon addition of two second-site changes that increase H8R virus infection to 100-fold less than the wild-type virus. Finally, chlorpromazine, dibucaine, and trifluoperazine, agents that induce pores in an arrested hemifusion state, rescued infection by H8R virus to within 2.5-fold of the level of wild-type virus infection and cell-cell fusion to half that mediated by wild-type envelope protein. We interpret these results to indicate that fusion progressed to the hemifusion intermediate but fusion pore formation was inhibited. These results establish that membrane fusion of Moloney MLV occurs via a hemifusion intermediate. We also interpret these findings as evidence that histidine 8 is a key switch-point residue between the receptor-induced conformation changes that expose fusion peptide and those that lead to six-helix bundle formation.


ACS Medicinal Chemistry Letters | 2013

Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors.

Matthew Burger; Wooseok Han; Jiong Lan; Gisele Nishiguchi; Cornelia Bellamacina; Mika Lindval; Gordana Atallah; Yu Ding; Michelle Mathur; Christopher Mcbride; Elizabeth L. Beans; Kristine M. Muller; Victoriano Tamez; Yanchen Zhang; Kay Huh; Paul Feucht; Tatiana Zavorotinskaya; Yumin Dai; Jocelyn Holash; Joseph Castillo; John L. Langowski; Yingyun Wang; Min Y. Chen; Pablo Garcia

Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described.


Journal of General Virology | 2008

The block to membrane fusion differs with the site of ligand insertion in modified retroviral envelope proteins

Byoung Y. Ryu; Tatiana Zavorotinskaya; Bernadette Trentin; Lorraine M. Albritton

Efforts to achieve cell type-specific transduction of retroviral vectors for gene therapy have centred on modification of the envelope protein (Env). Typically, addition of a ligand to Env gives binding to the new or target receptor, but little or no infection, and affects the subunit association of the modified Env. We previously discovered two point mutations that increase targeted infection by over 1000-fold when added to an Env modified by N-terminal insertion of the receptor-binding domain from amphotropic murine leukemia virus Env. Here, we asked whether these mutations would similarly increase transduction by Env modified with a clinically relevant ligand, human interleukin-13 (IL-13L). Addition of the point mutations stabilized the weak subunit association observed in some IL-13L-modified Env proteins, but infection via the target IL-13 receptor still did not occur. Fluorescence-based cell-cell fusion assays and studies with a membrane-curving agent revealed that defects in membrane fusion differed with the site of ligand insertion. When IL-13 was inserted into the N terminus of Env, membrane fusion was blocked prior to membrane-lipid mixing, regardless of whether flanking flexible linkers were added. Unexpectedly, insertion of IL-13 in the proline-rich region showed evidence of initiation of fusion and fusion-peptide exposure, but fusion was blocked at a subsequent step prior to fusion-pore formation. Thus, the site of ligand insertion influenced initiation of membrane fusion and its progression. These observations suggest that a novel site for ligand insertion must be identified before clinically useful targeted transduction will be achieved.


Bioorganic & Medicinal Chemistry Letters | 2016

Design, synthesis and structure activity relationship of potent pan-PIM kinase inhibitors derived from the pyridyl carboxamide scaffold

Gisele Nishiguchi; Matthew Burger; Wooseok Han; Jiong Lan; Gordana Atallah; Victoriano Tamez; Mika Lindvall; Cornelia Bellamacina; Pablo Garcia; Paul Feucht; Tatiana Zavorotinskaya; Yumin Dai; Kent Wong

The Pim proteins (1, 2 and 3) are serine/threonine kinases that have been found to be upregulated in many hematological malignancies and solid tumors. As a result of overlapping functions among the three isoforms, inhibition of all three Pim kinases has become an attractive strategy for cancer therapy. Herein we describe our efforts in identifying potent pan-PIM inhibitors that are derived from our previously reported pyridyl carboxamide scaffold as part of a medicinal chemistry strategy to address metabolic stability.


PLOS ONE | 2017

Inhibition of prenylated KRAS in a lipid environment

Johanna M. Jansen; Charles Wartchow; Wolfgang Jahnke; Susan Fong; Tiffany Tsang; Keith B. Pfister; Tatiana Zavorotinskaya; Dirksen E. Bussiere; Jan Marie Cheng; Kenneth Crawford; Yumin Dai; Jeffrey H. Dove; Eric Fang; Yun Feng; Jean-Michel Florent; John Fuller; Alvar D. Gossert; Mohammad Hekmat-Nejad; Chrystèle Henry; Julia Klopp; William P. Lenahan; Andreas Lingel; Sylvia Ma; Arndt Meyer; Yuji Mishina; Jamie Narberes; Gwynn Pardee; Savithri Ramurthy; Sebastien Rieffel; Darrin Stuart

RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.


Cancer Research | 2018

Abstract 1968: A novel glucocorticoid receptor (GR) antagonist overcomes GR-mediated chemoresistance in triple-negative breast cancer

Nadine S. Jahchan; Haiying Zhou; Wayne Kong; Dan Mc Weeney; Ted Tracy; James P. Stice; Dena Sutimantanapi; Chelsea Chen; Tom Huang; Yosup Rew; Xiauhui Du; Tatiana Zavorotinskaya; Daqing Sun; Qiuping Ye; Erica L. Jackson; Valeria R. Fantin

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily, which is activated by its endogenous steroid hormone ligand cortisol, and by synthetic glucocorticoids such as dexamethasone. Several preclinical studies have shown that GR mediates resistance to both targeted therapies and conventional chemotherapies in a variety of epithelial cancers including prostate, lung, bladder, renal, ovarian and triple-negative breast cancers (TNBC) (Gassler et al., 2005; Li et al., 2017; Zhang et al., 2007). In TNBC, both GR activation and a disrupted cortisol secretion cycle are associated with chemotherapy resistance, increased disease recurrence and poor prognosis (Pan et al., 2011; Skor et al., 2013). Therefore a molecule that inhibits GR activation could attenuate the development of therapy resistance and improve patient outcomes. We have developed novel GR inhibitors that effectively block GR transcriptional activity in cells by competing for ligand binding and by blocking GR-coactivator interactions. In vitro, treatment of TNBC cells with the GR antagonist OP-3713 blocks GR transcriptional activity and enhances the efficacy of chemotherapeutic agents. In rodents the predominant glucocorticoid is corticosterone (Siswanto et al., 2008), which is a weak agonist of human GR. Therefore, to fully activate GR in human xenograft cancer models it is necessary to provide exogenous cortisol. Using xenograft models of TNBC, we find that tumors grown in mice with physiologically relevant circulating cortisol levels to activate GR are significantly less sensitive to chemotherapy than those grown in the absence of cortisol. Furthermore, inhibition of GR by OP-3713 prevents tumor relapse following chemotherapy treatment. We have begun to elucidate the mechanisms by which GR mediates chemoresistance in TNBC, and the basis for the reversal by OP-3713. Our findings underscore the important role of GR as a mediator of resistance in TNBC and highlight the therapeutic potential of GR inhibitors in combination with clinically relevant chemotherapeutic agents. Citation Format: Nadine Jahchan, Haiying Zhou, Wayne Kong, Dan Mc Weeney, Ted Tracy, James Stice, Dena Sutimantanapi, Chelsea Chen, Tom Huang, Yosup Rew, Xiauhui Du, Tatiana Zavorotinskaya, Daqing Sun, Qiuping Ye, Erica Jackson, Valeria Fantin. A novel glucocorticoid receptor (GR) antagonist overcomes GR-mediated chemoresistance in triple-negative breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1968.


Molecular Cancer Research | 2014

Abstract B38: Inhibiting mutated KRAS, a broken switch of effector pathways

Johanna M. Jansen; Wolfgang Jahnke; Susan Fong; Laura Tandeske; Charles Wartchow; Keith B. Pfister; Tatiana Zavorotinskaya; Anke Blechschmidt; Dirksen E. Bussiere; Yumin Dai; Jeff Dove; Eric Fang; David Farley; Jean-Michel Florent; John Fuller; Simona Gokhin; Alvar D. Gossert; Mohammad Hekmat-Nejad; Chrystèle Henry; Julia Klopp; Bill Lenahan; Andreas Lingel; Arndt Meyer; Jamie Narberes; Gwynn Pardee; C. Gregory Paris; Savithri Ramurthy; Paul A. Renhowe; Sebastien Rieffel; Kevin Shoemaker

Mutated forms of KRAS are no longer able to switch effectors between “on” and “off” states. It is known that the function of KRAS is controlled by key parts in the C-terminus, including six consecutive lysines, a terminal prenyl moiety and a terminal carboxymethyl functional group. We set out to discover compounds which would inhibit the function of mutated KRAS as an activator for effectors. This campaign yielded several compounds that blocked biochemical and cellular functions of KRAS with low micromolar activity while not affecting markers outside of KRAS pathways in cells. In order to understand the mode of binding of these compounds to KRAS, we generated different forms of the protein, including unprenylated truncated and fully processed full-length protein. NMR studies with truncated protein (amino acids 1-169) identified a site at which compound binding stabilized the inactive conformation of KRAS. This site is located adjacent to switch-II and is similar to sites described by others. The Kd determined for this binding event is almost 3 orders of magnitude higher than the IC50 and EC50 values measured in biochemical and cellular assays. In order to understand this difference, we developed a biophysical assay using the Fortebio system which enabled binding studies in a system with full-length prenylated protein in the presence of lipids, to match the context of the biochemical and cellular assays. Micromolar binding to the full-length prenylated KRAS protein was observed in the Fortebio assay and binding was not observed in the absence of prenylation, consistent with the near millimolar Kd observed by NMR for truncated KRAS. Curiously, similar micromolar binding was seen to a peptide derived from the C-terminus of KRAS (amino acids 168-185) with and without prenyl modification while related compounds that do not bind to the full-length prenylated KRAS also do not bind to these peptides. It is still unclear whether binding to the terminal peptide in lipid context is related to the binding site adjacent to switch-II. From a drug discovery perspective, it remains to be confirmed whether current inhibitors can be optimized. Citation Format: Johanna Jansen, Wolfgang Jahnke, Susan Fong, Laura Tandeske, Charles Wartchow, Keith Pfister, Tatiana Zavorotinskaya, Anke Blechschmidt, Dirksen Bussiere, Yumin Dai, Jeff Dove, Eric Fang, David Farley, Jean-Michel Florent, John Fuller, Simona Gokhin, Alvar Gossert, Mohammad Hekmat-Nejad, Chrystele Henry, Julia Klopp, Bill Lenahan, Andreas Lingel, Arndt Meyer, Jamie Narberes, Gwynn Pardee, C Gregory Paris, Savithri Ramurthy, Paul Renhowe, Sebastien Rieffel, Kevin Shoemaker, Sharadha Subramanian, Tiffany Tsang, Stephania Widger, Armin Widmer, Isabel Zaror, Stephen Hardy. Inhibiting mutated KRAS, a broken switch of effector pathways. [abstract]. In: Proceedings of the AACR Special Conference on RAS Oncogenes: From Biology to Therapy; Feb 24-27, 2014; Lake Buena Vista, FL. Philadelphia (PA): AACR; Mol Cancer Res 2014;12(12 Suppl):Abstract nr B38. doi: 10.1158/1557-3125.RASONC14-B38


Cancer Research | 2014

Abstract LB-121: Dissecting MAPK pathway in BRAFmut melanoma: Intricacies of ERK1 and ERK2

Tatiana Zavorotinskaya; Upasana Mehra; Yumin Dai; Michel Faure; Ken Crawford; Karen Yu; Jan Marie Cheng; Xiaolei Ma; Jan Xuan; Kelly Yan; Mohammad Hekmat-Nejad; Hanne Merritt; Darrin Stuart; Charles Voliva

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA The MAPK signaling cascade, comprised of the RAS GTPases, the RAF, MEK1/2 and ERK1/2 kinases is frequently deregulated in cancer. ERK1 and ERK2 transmit signals generated by mutant BRAF, Ras or by activated receptor tyrosine kinases to a wide range of nuclear and cytoplasmic substrates, resulting in signal amplification, cell growth, migration and survival. ERK1 and ERK2 have been considered as redundant because of their high homology, large number of overlapping substrates, and ability to substitute for each other in genetically engineered mouse models. Nevertheless, several investigators have identified non-redundant roles for ERK isoforms in oncogenesis; for instance, ERK2, but not ERK1, appears to be responsible for RASmut induced epithelial-to-mesenchymal transformation. Besides, each of the ERK isoforms employs spatially distinct substrate docking domains, DEF (docking site for ERK FXFP) and D (docking domain), to signal to different subsets of substrates and differentially transmit signals downstream. We set out to determine the roles of ERK isoforms as well as DEF- and D-domain dependent signaling in the survival of melanoma tumor cells expressing activating BRAF mutations which are highly sensitive to pharmacological inhibitors of RAF, MEK1/2 and ERK1/2. We designed ERK1 and ERK2 mutants resistant to ATP-competitive ERK1/2 inhibitors and employed auto-activating, MEK-independent, ERK1 and ERK2 mutants to ask if BRAFmut melanoma survival is dependent on either or both ERK isoforms. In addition, we used RNAi and zinc-finger nucleases’ to knockdown or delete each of ERK isoforms. These experimental approaches consistently demonstrated that ERK2, but not ERK1, was the sole driver of cell survival in multiple BRAFmut melanoma cell lines. Moreover, genome-wide gene expression analysis indicated that ERK2, but not ERK1, was largely responsible for transcriptional effects imposed by pharmacological RAF, MEK1/2 or ERK1/2 inhibitors. Thus, in BRAFmut melanoma, functions of ERK1 and 2 are not redundant, and ERK1 cannot substitute for a disabled ERK2. Next, we introduced DEF- and D-substrate docking domain mutations into an ERK inhibitor resistant ERK2 to investigate whether signaling through either domain is sufficient to support melanoma survival. We observed that signaling through D- or DEF- domains of ERK2 had differential effects on gene expression and substrate phosphorylation. Consequently, we have found that a subset of melanoma cell lines was sensitive to elimination of DEF- docking domain interactions, whereas another subset of cell lines tolerated mutations in the DEF-site. Interactions and signaling through ERK D-docking site were dispensable for survival of all melanoma cell lines tested. These data suggest potential novel approaches to target oncogenic MAPK pathway. Citation Format: Tatiana Zavorotinskaya, Upasana Mehra, Yumin Dai, Michel Faure, Ken Crawford, Karen Yu, Jan Marie Cheng, Xiaolei Ma, Jan Xuan, Kelly Yan, Mohammad Hekmat-Nejad, Hanne Merritt, Darrin Stuart, Charles Voliva. Dissecting MAPK pathway in BRAFmut melanoma: Intricacies of ERK1 and ERK2. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr LB-121. doi:10.1158/1538-7445.AM2014-LB-121

Collaboration


Dive into the Tatiana Zavorotinskaya's collaboration.

Top Co-Authors

Avatar

Lorraine M. Albritton

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge