Tatjana C. Jakobs
Massachusetts Eye and Ear Infirmary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatjana C. Jakobs.
Journal of Cell Biology | 2007
Gareth R. Howell; Richard T. Libby; Tatjana C. Jakobs; Richard S. Smith; F. Campbell Phalan; Joseph W. Barter; Jessica M. Barbay; Jeffrey K. Marchant; Nagaraju Mahesh; Vittorio Porciatti; Alan V. Whitmore; Richard H. Masland; Simon W. M. John
Here, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons. Using BAX-deficient DBA/2J mice, which retain all of their RGCs, we provide experimental evidence for an insult within or very close to the lamina in the optic nerve. We show that proximal axon segments attached to their cell bodies survive to the proximity of the lamina. In contrast, axon segments in the lamina and behind the eye degenerate. Finally, the Wlds allele, which is known to protect against insults to axons, strongly protects against DBA/2J glaucoma and preserves RGC activity as measured by pattern electroretinography. These experiments provide strong evidence for a local insult to axons in the optic nerve.
Journal of Cell Biology | 2005
Tatjana C. Jakobs; Richard T. Libby; Yixin Ben; Simon W. M. John; Richard H. Masland
Using a variety of double and triple labeling techniques, we have reevaluated the death of retinal neurons in a mouse model of hereditary glaucoma. Cell-specific markers and total neuron counts revealed no cell loss in any retinal neurons other than the ganglion cells. Within the limits of our ability to define cell types, no group of ganglion cells was especially vulnerable or resistant to degeneration. Retrograde labeling and neurofilament staining showed that axonal atrophy, dendritic remodeling, and somal shrinkage (at least of the largest cell types) precedes ganglion cell death in this glaucoma model. Regions of cell death or survival radiated from the optic nerve head in fan-shaped sectors. Collectively, the data suggest axon damage at the optic nerve head as an early lesion, and damage to axon bundles would cause this pattern of degeneration. However, the architecture of the mouse eye seems to preclude a commonly postulated source of mechanical damage within the nerve head.
Journal of Biological Chemistry | 1997
Ingeborg Dreher; Tatjana C. Jakobs; Josef Köhrle
We isolated an 18-kilobase (kb) genomic selenoprotein P clone from a human placenta library and cloned, sequenced, and characterized the 5′-flanking region of the human selenoprotein P gene. Sequence analysis revealed an intron between base pairs (bp) −13 and −14 upstream of the ATG codon and another one between bp 534 and 535 of the coding region. The major transcription start site of selenoprotein P in human HepG2 hepatocarcinoma cells was mapped to bp −70 by 5′-rapid amplification of cDNA ends and by primer extension. 1.8 kb of the 5′-flanking sequence were fused to a luciferase reporter gene. They exhibited functional promoter activity in HepG2 hepatocarcinoma and Caco2 colon carcinoma cells in transient transfection experiments. Treatment of transfected HepG2 cells with the cytokines interleukin 1β, tumor necrosis factor α, and interferon γ repressed promoter activity. Nuclear extracts of interferon γ-treated cells bound to a signal transducer and activator of transcription response element of the promoter in gel retardation experiments. By transfection of promoter-deletion constructs, a TATA box and a putative SP1 site were identified to be necessary for selenoprotein P transcription. These data indicate that the human selenoprotein P gene contains a strong promoter that is cytokine responsive. Furthermore, selenoprotein P, secreted by the liver, might react as a negative acute phase protein.
The Journal of Comparative Neurology | 2009
Daniel Sun; Ming Lye-Barthel; Richard H. Masland; Tatjana C. Jakobs
We evaluated the shapes, numbers, and spatial distribution of astrocytes within the glial lamina, an astrocyte‐rich region at the junction of the retina and optic nerve. A primary aim was to determine how the population of astrocytes, collectively, partitions the axonal space in this region. Astrocyte processes labeled with glial fibrillary acidic protein (GFAP) compartmentalize ganglion cell axons into bundles, forming “glial tubes,” and giving the glial architecture of the optic nerve head in transverse section a honeycomb appearance. The shapes of individual astrocytes were studied by using transgenic mice that express enhanced green fluorescent protein in isolated astrocytes (hGFAPpr‐EGFP). Within the glial lamina the astrocytes were transverse in orientation, with thick, smooth primary processes emanating from a cytoplasmic expansion of the soma. Spaces between the processes of neighboring astrocytes were spatially aligned, to form the apertures through which the bundles of optic axons pass. The processes of individual astrocytes were far‐reaching—they could span most of the width of the nerve—and overlapped the anatomical domains of other near and distant astrocytes. Thus, astrocytes in the glial lamina do not tile: each astrocyte participates in ensheathing approximately one‐quarter of all of the axon bundles in the nerve, and each glial tube contains the processes of about nine astrocytes. This raises the mechanistic question of how, in glaucoma or other cases of nerve damage, the glial response can be confined to a circumscribed region where damage to axons has occurred. J. Comp. Neurol. 516:1–19, 2009.
The Neuroscientist | 2012
Daniel Sun; Tatjana C. Jakobs
Astrocytes respond to all forms of CNS insult and disease by becoming reactive, a nonspecific but highly characteristic response that involves various morphological and molecular changes. Probably the most recognized aspect of reactive astrocytes is the formation of a glial scar that impedes axon regeneration. Although the reactive phenotype was first suggested more than 100 years ago based on morphological changes, the remodeling process is not well understood. We know little about the actual structure of a reactive astrocyte, how an astrocyte remodels during the progression of an insult, and how populations of these cells reorganize to form the glial scar. New methods of labeling astrocytes, along with transgenic mice, allow the complete morphology of reactive astrocytes to be visualized. Recent studies show that reactivity can induce a remarkable change in the shape of a single astrocyte, that not all astrocytes react in the same way, and that there is plasticity in the reactive response.
The Journal of Neuroscience | 2010
Daniel Sun; Ming Lye-Barthel; Richard H. Masland; Tatjana C. Jakobs
Reactive astrocytes are a pathological hallmark of many CNS injuries and neurodegenerations. They are characterized by hypertrophy of the soma and processes and an increase in the expression of glial fibrillary acidic protein. Because the cells obscure each other in immunostaining, little is known about the behavior of a single reactive astrocyte, nor how single astrocytes combine to form the glial scar. We have investigated the reaction of fibrous astrocytes to axonal degeneration using a transgenic mouse strain expressing enhanced green fluorescent protein in small subsets of astrocytes. Fibrous astrocytes in the optic nerve and corpus callosum initially react to injury by hypertrophy of the soma and processes. They retract their primary processes, simplifying their shape and dramatically reducing their spatial coverage. At 3 d after crush, quantitative analysis revealed nearly a twofold increase in the thickness of the primary processes, a halving of the number of primary processes leaving the soma and an eightfold reduction in the spatial coverage. In the subsequent week, they partially reextend long processes, returning to a near-normal morphology and an extensive spatial overlap. The resulting glial scar consists of an irregular array of astrocyte processes, contrasting with their original orderly arrangement. These changes are in distinct contrast to those reported for reactive protoplasmic astrocytes of the gray matter, in which the number of processes and branchings increase, but the cells continue to maintain nonoverlapping individual territories throughout their response to injury.
Investigative Ophthalmology & Visual Science | 2013
Ming Lye-Barthel; Daniel Sun; Tatjana C. Jakobs
PURPOSE To establish the morphologic changes of astrocytes in the glial lamina of glaucomatous mice. METHODS A strain of mice that expresses GFP in individual astrocytes (hGFAPpr-GFP) was crossed into the DBA/2J strain that develops glaucoma. In the resulting strain (D2.hGFAPpr-GFP) we assessed the severity of glaucoma by staining the retina for neurofilaments and counting the neurons of the retinal ganglion cell layer. We observed the morphology of astrocytes in the glial lamina of the optic nerves. RESULTS D2.hGFAPpr-GFP mice developed glaucoma in an age-dependent manner. Astrocytes in the glial lamina showed morphologic changes that correlated with the severity of glaucoma. The cells showed thickening of processes from 1.3 ± 0.28 μm in nondiseased animals to 1.71 ± 0.46 μm in eyes with moderate glaucoma and 2.1 ± 0.42 μm in those with severe glaucoma. Their spatial coverage, as determined by their convex polygon area, was reduced in eyes with severe glaucoma. The astrocytes in severely glaucomatous optic nerves also showed simplification of their processes. In 6-month-old mice with no obvious signs of degeneration in the retina, we found astrocytes with appendages growing out of primary astrocyte processes into the axon bundles. This localized hypertrophy of processes was never observed in the hGFAPpr-GFP strain. CONCLUSIONS Confirming results after optic nerve crush, astrocytes in glaucomatous optic nerves had thickened and simplified processes, and reduced spatial coverage. We also found evidence of localized sprouting of new processes in early stages of the disease, before detectable changes in ganglion cell number.
The Journal of Neuroscience | 2005
Bin Lin; Tatjana C. Jakobs; Richard H. Masland
Rod signals are transmitted to ON retinal ganglion cells by means of gap junctions between AII amacrine cells and ON bipolars. The AII amacrine cells are known to express connexin36 (Cx36), but previous studies of Cx36 in ON cone bipolars have been ambiguous. Here, we studied bipolar cells in a transgenic mouse line that expresses high levels of green fluorescent protein (GFP) in one type of ON cone bipolar cell. We found strong Cx36 immunostaining in the axon terminals of the GFP-labeled type 357 bipolar cells in both vertical sections and whole mounts of the retina. This finding was confirmed by single-cell immunostaining and single-cell reverse transcription-PCR (RT-PCR). As reported previously (Maxeiner et al., 2005), Cx45 was found in some ON bipolar cells, but RT-PCR showed Cx36 and not Cx45 to be expressed by the type 357 bipolar cells. Some of the remaining GFP-negative bipolar cells expressed Cx45 but not Cx36. It appears that different types of ON cone bipolar cells express different connexins at their gap junctions with AII amacrine cells.
The Journal of Comparative Neurology | 2008
Tatjana C. Jakobs; A. Koizumi; Richard H. Masland
The spatial pattern of excitatory glutamatergic input was visualized in a large series of ganglion cells of the rabbit retina, by using particle‐mediated gene transfer of an expression plasmid for postsynaptic density 95‐green fluorescent protein (PSD95‐GFP). PSD95‐GFP was confirmed as a marker of excitatory input by co‐localization with synaptic ribbons (RIBEYE and kinesin II) and glutamate receptor subunits. Despite wide variation in the size, morphology, and functional complexity of the cells, the distribution of excitatory synaptic inputs followed a single set of rules: 1) the linear density of synaptic inputs (PSD95 sites/linear μm) varied surprisingly little and showed little specialization within the arbor; 2) the total density of excitatory inputs across individual arbors peaked in a ring‐shaped region surrounding the soma, which is in accord with high‐resolution maps of receptive field sensitivity in the rabbit; and 3) the areal density scaled inversely with the total area of the dendritic arbor, so that narrow dendritic arbors receive more synapses per unit area than large ones. To achieve sensitivity comparable to that of large cells, those that report upon a small region of visual space may need to receive a denser synaptic input from within that space. J. Comp. Neurol. 510:221–236, 2008.
PLOS ONE | 2007
A. Koizumi; Günther Zeck; Yixin Ben; Richard H. Masland; Tatjana C. Jakobs
Background The adult mammalian retina is an important model in research on the central nervous system. Many experiments require the combined use of genetic manipulation, imaging, and electrophysiological recording, which make it desirable to use an in vitro preparation. Unfortunately, the tissue culture of the adult mammalian retina is difficult, mainly because of the high energy consumption of photoreceptors. Methods and Findings We describe an interphase culture system for adult mammalian retina that allows for the expression of genes delivered to retinal neurons by particle-mediated transfer. The retinas retain their morphology and function for up to six days— long enough for the expression of many genes of interest—so that effects upon responses to light and receptive fields could be measured by patch recording or multielectrode array recording. We show that a variety of genes encoding pre- and post-synaptic marker proteins are localized correctly in ganglion and amacrine cells. Conclusions In this system the effects on neuronal function of one or several introduced exogenous genes can be studied within intact neural circuitry of adult mammalian retina. This system is flexible enough to be compatible with genetic manipulation, imaging, cell transfection, pharmacological assay, and electrophysiological recordings.