Tatsuhiko Azegami
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatsuhiko Azegami.
Vaccine | 2014
Tatsuhiko Azegami; Hiroshi Kiyono
Mucosal surfaces are continuously exposed to the external environment and therefore represent the largest lymphoid organ of the body. In the mucosal immune system, gut-associated lymphoid tissues (GALTs), including Peyers patches and isolated lymphoid follicles, play an important role in the induction of antigen-specific immune responses in the gut. GALTs have unique organogenesis characteristics and interact with the network of dendritic cells and T cells for the simultaneous induction and regulation of IgA responses and oral tolerance. In these lymphoid tissues, antigens are up taken by M cells in the epithelial layer, and antigen-specific immune responses are subsequently initiated by GALT cells. Nasopharynx- and tear-duct-associated lymphoid tissues (NALTs and TALTs) are key organized lymphoid structures in the respiratory tract and ocular cavities, respectively, and have been shown to interact with each other. Mucosal surfaces are also characterized by host-microbe interactions that affect the genesis and maturation of mucosa-associated lymphoid tissues and the induction and regulation of innate and acquired mucosal immune responses. Because most harmful pathogens enter the body through mucosal surfaces by ingestion, inhalation, or sexual contact, the mucosa is a candidate site for vaccination. Mucosal vaccination has some physiological and practical advantages, such as decreased costs and reduced risk of needle-stick injuries and transmission of bloodborne diseases, and it is painless. Recently, the application of modern bioengineering and biochemical engineering technologies, including gene transformation and manipulation systems, resulted in the development of systems to express vaccine antigens in transgenic plants and nanogels, which will usher in a new era of delivery systems for mucosal vaccine antigens. In this review, based on some of our research groups thirty seven years of progress and effort, we highlight the unique features of mucosal immune systems and the application of mucosal immunity to the development of a new generation of vaccines.
Journal of Clinical Investigation | 2014
Kaori Hayashi; Hiroyuki Sasamura; Mari Nakamura; Tatsuhiko Azegami; Hideyo Oguchi; Yusuke Sakamaki; Hiroshi Itoh
The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria.
International Immunology | 2014
Tatsuhiko Azegami; Yoshikazu Yuki; Hiroshi Kiyono
The mucosal surface is the largest route through which pathogens enter the human body. To control the outbreak of mucosal infectious diseases, we must use our knowledge of the mucosal immune system to create vaccines that elicit protective mucosal and systemic immunity. Mucosal vaccines have advantages over traditional injectable vaccines in that they not only induce effective mucosal immune responses, but they also do not cause physical or psychological discomfort. Mucosal vaccines currently licensed for human use include oral vaccines against Vibrio cholerae, Salmonella typhi, poliovirus and rotavirus, and nasal vaccines against influenza virus. To further improve the existing vaccines, it will be necessary to develop novel vaccine production, storage and delivery systems through innovative strategies derived from interdisciplinary scientific research. Our accumulated knowledge of the innate and acquired arms of the mucosal immune system and the recent scientific and technical advancements in the fields of molecular biology, plant biology, bio-engineering and chemical engineering, genome biology and systems biology have created a unique research and development platform for the development of the next generation of mucosal vaccines. This review summarizes the current perspectives and future directions of mucosal vaccine development with emphasis on oral and nasal vaccines for the control of infectious diseases.
Kidney International | 2010
Kaori Hayashi; Hiroyuki Sasamura; Kimiko Ishiguro; Yusuke Sakamaki; Tatsuhiko Azegami; Hiroshi Itoh
Understanding mechanisms that contribute to the regression of glomerulosclerosis is important for developing new strategies to treat chronic kidney disease. We reported that transient high-dose treatment with an angiotensin receptor blocker causes regression of renal arteriolar hypertrophy and hypertension in spontaneously hypertensive rats. To extend those findings to another form of kidney disease, we examined the short- and long-term effects of transient high-dose angiotensin receptor blocker treatment in a mouse model of adriamycin-induced glomerulosclerosis. A 2-week course of candesartan caused a dose-dependent regression of established glomerulosclerotic lesions sustained for over 6 months following cessation of treatment. Highly sensitive in situ zymography and activity assays showed that glomerular matrix metalloproteinase (MMP)-2 activity was increased after high-dose angiotensin blocker therapy. Treatment of cultured podocytes with candesartan resulted in an increase in MMP-2 activity. The regression of glomerulosclerosis was partially attenuated in mice pretreated with the MMP inhibitor doxycycline, as well as in MMP-2 knockout mice. Our results suggest that transient high-dose angiotensin receptor blocker treatment effectively induced sustained regression of glomerulosclerosis by a mechanism mediated, in part, by changes in MMP-2 activity.
Hypertension Research | 2012
Tatsuhiko Azegami; Hiroyuki Sasamura; Kaori Hayashi; Hiroshi Itoh
Previous studies have shown that renin–angiotensin (Ang) system vaccines may be effective for the treatment of hypertension, but their efficacy for the prevention of renal disease is unclear. The aim of this study was to compare the effects of an Ang II type 1 (AT1) receptor vaccine with an Ang II receptor blocker (ARB) and a vasodilator on blood pressure (BP) and renal injury in the L-NAME nephropathy model. Male spontaneously hypertensive rats (SHRs) were divided into six groups and treated transiently with three injections of vehicle or AT1 receptor vaccine (0.1 mg) at age 4, 6 and 8 weeks, or continuously with candesartan cilexetil (0.1 mg kg−1 per day) or hydralazine hydrochloride (5 mg kg−1 per day), then administered NG-nitro-L-arginine methyl ester (L-NAME) from age 18 to 21 weeks to induce renal injury. Vaccination against the AT1 receptor caused a significant increase in AT1 receptor titers, and a sustained decrease in BP. L-NAME treatment resulted in a marked increase in proteinuria in the control groups, which was completely suppressed in the AT1 vaccine-treated group, and glomerular injury scores were also significantly decreased. Real-time RT-PCR and immunofluorescence studies revealed increased renin mRNA, and increased glomerular expression of nephrin. Comparable results were seen in rats treated continuously with the ARB candesartan, but not with hydralazine. These results suggest that transient AT1 vaccination is as effective as continuous treatment with ARB, not only for the attenuation of hypertension, but also for the prevention of L-NAME-induced nephropathy in SHR.
Archivum Immunologiae Et Therapiae Experimentalis | 2015
Tatsuhiko Azegami; Hiroshi Itoh; Hiroshi Kiyono; Yoshikazu Yuki
Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.
Kidney International | 2015
Kaori Hayashi; Hiroyuki Sasamura; Mari Nakamura; Yusuke Sakamaki; Tatsuhiko Azegami; Hideyo Oguchi; Hirobumi Tokuyama; Shu Wakino; Koichi Hayashi; Hiroshi Itoh
Proteinuria is a central component of chronic kidney disease and an independent risk factor for cardiovascular disease. Kidney podocytes have an essential role as a filtration barrier against proteinuria. Kruppel-like Factor 4 (KLF4) is expressed in podocytes and decreased in glomerular diseases leading to methylation of the nephrin promoter, decreased nephrin expression and proteinuria. Treatment with an angiotensin receptor blocker (ARB) reduced methylation of the nephrin promoter in murine glomeruli of an adriamycin nephropathy model with recovery of KLF4 expression and a decrease in albuminuria. In podocyte-specific KLF4 knockout mice, the effect of ARB on albuminuria and the nephrin promoter methylation was attenuated. In cultured human podocytes, angiotensin II reduced KLF4 expression and caused methylation of the nephrin promoter with decreased nephrin expression. In patients, nephrin promoter methylation was increased in proteinuric kidney diseases with decreased KLF4 and nephrin expression. KLF4 expression in ARB-treated patients was higher in patients with than without ARB treatment. Thus, angiotensin II can modulate epigenetic regulation in podocytes and ARB inhibits these actions in part via KLF4 in proteinuric kidney diseases. This study provides a new concept that renin-angiotensin system blockade can exert therapeutic effects through epigenetic modulation of the kidney gene expression.
Proceedings of the Japan Academy. Series B, Physical and biological sciences | 2015
Hiroshi Kiyono; Tatsuhiko Azegami
The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases.
Mucosal Immunology | 2017
Tatsuhiko Azegami; Yoshikazu Yuki; Shin Ichi Sawada; Mio Mejima; K Ishige; Kazunari Akiyoshi; Hiroshi Itoh; Hiroshi Kiyono
Obesity is associated with multiple comorbidities such as cardiovascular diseases and has a huge economic impact on the health-care system. However, the treatment of obesity remains insufficient in terms of efficacy, tolerability, and safety. Here we created a nasal vaccine against obesity for the first time. To avoid the injectable administration-caused pain and skin-related adverse event, we focused on the intranasal route of antigen delivery. We developed a vaccine antigen (ghrelin–PspA (pneumococcal surface protein A)), which is a recombinant fusion protein incorporating ghrelin, a hormone that stimulates food intake and decreases energy expenditure, and PspA, a candidate of pneumococcal vaccine as a carrier protein. Ghrelin–PspA antigen was mixed with cyclic di-GMP adjuvant to enhance the immunogenicity and incorporated within a nanometer-sized hydrogel for the effective antigen delivery. Intranasal immunization with ghrelin–PspA vaccine elicited serum immunoglobulin G antibodies against ghrelin and attenuated body weight gain in diet-induced obesity mice. This obesity-attenuating effect was caused by a decrease in fat accumulation and an increase in energy expenditure that was partially due to an increase in the expression of mitochondrial uncoupling protein 1 in brown adipose tissue. The development of this nasal vaccine provides a new strategy for the prevention and treatment of obesity.
Hypertension | 2014
Hideyo Oguchi; Hiroyuki Sasamura; Kazunobu Shinoda; Shinya Morita; Hidaka Kono; Ken Nakagawa; Kimiko Ishiguro; Kaori Hayashi; Mari Nakamura; Tatsuhiko Azegami; Mototsugu Oya; Hiroshi Itoh
The role of salt intake in the development of hypertension is prominent, but its mechanism has not been fully elucidated. Our aim was to examine the effect of transient salt intake during the prehypertensive period in hypertensive model animals. Dahl salt-sensitive rats and spontaneously hypertensive rats were fed from 6 to 14 weeks with low-salt (0.12% NaCl), normal-salt (0.8% NaCl), high-salt (7% NaCl), or high-sodium/normal-chloride diet and returned to normal-salt diet for 3 months. Rats in the high-salt group saw elevations in blood pressure (BP) not only during the treatment period but also for the 3 months after returning to normal-salt diet. We named this phenomenon salt memory. Renal arteriolar injury was found in the high-salt group at the end of experiment. Dahl salt-sensitive rats were fed from 6 to 14 weeks with high-salt diet with angiotensin receptor blocker, vasodilator, calcium channel blocker, and calcium channel blocker+angiotensin receptor blocker and returned to normal-salt diet. Although BP was suppressed to control levels by vasodilator or calcium channel blocker, elevated renal angiotensin II and renal arteriolar injury were observed, and salt memory did not disappear because of sustained renal arteriolar injury. Calcium channel blocker+angiotensin receptor blocker suppressed renal arteriolar injury, resulting in the disappearance of salt memory. Cross-transplantation of kidneys from Dahl salt-sensitive rats on high salt to control rats caused increase of BP, whereas control kidneys caused reduction in BP of hypertensive rats, inducing the central role of the kidney. These results suggest that renal arteriolar injury through BP and renal angiotensin II elevation plays important roles in the development of salt memory for hypertension.